

Lecture Notes on Programming Languages Elvis C. Foster

111

Lecture 11: Exception and Event Handling

This lecture discusses how programming languages support exceptions. Topics to be covered include:

 Introduction

 Exception Handling in C++

 Exception Handling in Java

 Exception Handling in Ada and Other Pascal-like Languages

 Event Handling

 Summary and Concluding Remarks

Copyright © 2000 – 2018 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form

or by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission of the author.

Lecture 11: Exception and Event Handling Elvis C. Foster

112

11.1 Introduction

Inexperienced programmers usually think their program will always work as expected. On the other hand,

experienced programmers know that things do not always work as expected. Smart programming is about

taking care of the expected as well as the unexpected. Programmers refer to the unexpected situations as

exceptions.

The following are some examples of scenarios that will cause program errors (exceptions):

 The user enters a character where an integer is expected;

 The program uses an array subscript that is outside of the range of valid subscript values for a given

array;

 An attempt is made at dividing by zero;

 An attempt is made to write to a file that does not exist.

There are three broad categories of programming errors:

 Syntax errors

 Logic errors

 Runtime errors

We have already shown how programming languages take care of syntax errors through the translation process

(review lecture 3). Logic errors are the responsibility of the programmer, but programming languages help by

providing debugging features that the programmer can use. Runtime errors are typically handled by exceptions.

When an exception occurs, unless the programmer catches and resolves it, the program terminates abnormally

and you get a compiler exception message.

Some compilers provide clear exception messages that are easy to track and correct. The Java compiler is

particularly outstanding in this area, while the C compiler is perhaps close to the other extreme.

11.2 Exception Handling in C++

C++ treats all exceptions similarly. You can throw an exception from any function. You can also catch an

exception, and report it, or re-throw it for another function to negotiate. Exceptions are typically handled in try-

catch blocks of code. Figure 11-1a provides the basic syntactical structure for C++ exception handling. The

essence of the internal workings is as follows: A try-block executes code that throws at least one exception; for

each exception thrown, there is a catch-block that handles recovery from the exception.

Figure 11-1a is followed by an example in figure 11-1b. In this illustration, the function divide (…) divides its

first parameter by the second parameter, but throws an exception if the second parameter is zero. Because this

function throws an exception, it must be called in a try-catch block as shown.

Lecture 11: Exception and Event Handling Elvis C. Foster

113

Figure 11-1a: Syntactical Structure of C++ Exception Handling

Figure 11-1b: Illustrating Exception Handling in C++

const int DIV_BY_ZERO = 10; // A global constant
// …
double divide (double First, double Second); // Function prototype
// …

int main(int argc, char* argv[])
{
 // …
 try
 {
 double Result;
 double FirstNumber;
 // …
 Result = divide(FirstNumber, 0);
 // …
 }

 catch (int ErrNum)
 {
 if (ErrNum == DIV_BY_ZERO) cout << “Cannot divide by zero!\n”;
 // …
 }

 // …
} // End of main

double divide (double First, double Second)
{
 if (Second == 0) throw DIV_BY-ZERO;
 return First/Second;
}

// …

try {
// Code from which an exception may be raised; multiple exceptions may be raised
}
// . . .
catch (<Parameter for the exception>)
{
 // Exception-handling code
}
// . . .
catch (<Parameter for the exception>)
{
 // Exception-handling code; there is typically a catch-block for each exception raised in a preceding try-block
}

Lecture 11: Exception and Event Handling Elvis C. Foster

114

11.2 Exception Handling in C++ (continued)

Figure 11-2 provides a second example. Here, an array is used to store all error messages that will be sent by

the executing program. As scenarios develop, exception messages are pulled from this array and sent to the

user. This generic approach can be applied to any program.

Figure 11-2: Using try-block and catch-block

 #include <cstdlib>
#include <iostream>
#include <string>
#include <ctype.h>

const int REFERENCE = 1980000;
string ErrMsg[10]; // This array contains all error messages displayed by the program

int main(int argc, char *argv[])
{
 int ThisNumber;
 string ThisName;
 Initialize(); // Initialize the message array called ErrMsg
 // …
 try {
 InputData (ThisNumber, ThisName);
 // …
 }
 catch (int ErrNum)
 {
 cout << ErrMsg[ErrNum] << end;
 }
 // … Rest of the program
} // End of main
//…
// Other Functions
void InputData (int &ThisNumber, string &ThisName) // The InputData Function
{
 cout << ”Enter ID Number:”; cin>> ThisNumber; getchar();
 if (ThisNumber < REFERENCE) throw (0);
 cout << endl;
 cout<<”Enter Name:”;
 cin >> ThisName; char FirstBytes[3] = (ThisName.substr(0,2)).c_str();
 if (!isalpha(FirstBytes[0])) throw (1);
 // …
}
void Initialize () // Initialization Method
{
 // Initialize ErrMsg array…
 ErrMsg[0] = “Invalid ID Number”;
 ErrMsg[1] = “Invalid Name”;
 ErrMsg[2] = “Invalid Date of Birth”;
 // …
} // End of Initialization Method

Lecture 11: Exception and Event Handling Elvis C. Foster

115

11.3 Exception Handling in Java

Java provides a much more elaborate and stratified exception handling system, consisting of a hierarchy of

exception classes. Each Java method that throws an exception must have an adjustment in its heading to

indicate what type of exception is thrown. The try-catch blocks are used in a manner that is similar to C++.

Figures 11-3 through 11-8 provide additional clarification followed by an example.

Figure11-3: The Java Exception Class Hierarchy

O
bject

Throwable

Exception

Error

ClassNotFoundException

CloneNotSupportedException

RuntimeException

AWTException

IOException

Several more classes

ArithmeticException

NullPointerException

IndexOutOfBoundsException

IllegalArgumentException

Several more classes

LinkageError

VirtualMachineError

AWTError

AssertionError

Several other classes

Lecture 11: Exception and Event Handling Elvis C. Foster

116

Figure 11-4: Revised Anatomy of a Java Method

Figure 11-5: Simple Illustration of a try-catch Block

public void InputData () throws Exception
{
 String InputString;
 try
 {

 int InputInteger = Integer.parseInt(JOptionPane.showInputDialog (null, “Integer Please!”, +
“Integer Prompt”));

 }
 catch (Exception Ex)
 {

 System.out.println(Ex.getMessage()); // Prints the message of the exception
 System.out.println(“Invalid integer entered”); // Prints additional message

 }
 …

}

Method ::=
<Modifier><ReturnType><MethodName>(<Parameters>) throws <Exception1>,…<ExceptionN>
{
 … // Body of Method
}

Modifier ::=
[final] public | private | protected [static] [abstract]

Note: Exception1… ExceptionN represent valid exception class(es) as indicated in figure 11-3

Lecture 11: Exception and Event Handling Elvis C. Foster

117

Figure 11-6: Illustrating Exception Throwing in Java

public void AcceptData() throws Exception
 {
 int x = 0; // Used for input validation
 char SameChar; // Used for input validation
 try
 {
 ID_Number = JOptionPane.showInputDialog(null, "Member ID: ", "Enter College Member Data", JOptionPane.QUESTION_MESSAGE);
 for (x=1; x<= ID_Number.length(); x++) // For each character in ID-Number
 { // Ensure that the input is numeric
 SameChar = ID_Number.charAt(x-1); // ThisChar = SameChar;
 if (!(Character.isDigit(SameChar))) // If not numeric
 {
 Exception Ex1 = new Exception("ID_Number must be numeric.");
 throw Ex1;
 }
 } // End-For each character in ID-Number

 FirstName = JOptionPane.showInputDialog(null, "First Name: ", "Enter College Member Data", JOptionPane.QUESTION_MESSAGE);
 for (x=1; x<= FirstName.length(); x++) // For each character in FirstName
 { // Ensure that the input is alphabetic
 SameChar = FirstName.charAt(x-1); // ThisChar = SameChar;
 if (!(Character.isLetter(SameChar))) // If not alphabetic
 {
 Exception Ex2 = new Exception("FirstName must be alphabetic.");
 throw Ex2;
 }
 } // End-For each character in FirstName

 LastName = JOptionPane.showInputDialog(null, "Last Name: ", "Enter College Member Data", JOptionPane.QUESTION_MESSAGE);
 for (x=1; x<= LastName.length(); x++) // For each character in LastName
 { // Ensure that the input is alphabetic
 SameChar = LastName.charAt(x-1); // ThisChar = SameChar;
 if (!(Character.isLetter(SameChar))) // If not alphabetic
 {
 Exception Ex3 = new Exception("LastName must be alphabetic.");
 throw Ex3;
 }
 } // End-For each character in LastName

 AddressLine1 = JOptionPane.showInputDialog(null, "Address Line 1: ", "Enter College Member Data", JOptionPane.QUESTION_MESSAGE);
 AddressLine2 = JOptionPane.showInputDialog(null, "Address Line 2: ", "Enter College Member Data", JOptionPane.QUESTION_MESSAGE);
 StateProv = JOptionPane.showInputDialog(null, "State or Province: ", "Enter College Member Data", JOptionPane.QUESTION_MESSAGE);
 Zip = JOptionPane.showInputDialog(null, "Zip Code: ", "Enter College Member Data", JOptionPane.QUESTION_MESSAGE);

 Telephone = JOptionPane.showInputDialog(null, "Telephone: ", "Enter College Member Data", JOptionPane.QUESTION_MESSAGE);
 for (x=1; x<= Telephone.length(); x++) // For each character in Telephone
 { // Ensure that the input is numeric
 SameChar = Telephone.charAt(x-1); // ThisChar = new Character(SameChar);
 if (!((Character.isDigit(SameChar)) || (SameChar == '-'))) // If not numeric
 {
 Exception Ex4 = new Exception("Telephone number must be numeric, delimited with dashes.");
 throw Ex4;
 }
 } // End-For each character in Telephone
 E_Mail = JOptionPane.showInputDialog(null, "E-Mail: ", "Enter College Member Data", JOptionPane.QUESTION_MESSAGE);
 } // End try-block

 catch (Exception Ex) // Catches and re-throws any of the exceptions thrown from above
 {
 throw Ex;
 }

 } // End of AcceptData method

Lecture 11: Exception and Event Handling Elvis C. Foster

118

Figure 11-7: Catching and Re-throwing an Exception

Figure 11-8: Illustrating the finally-block

try
{
 <statement(s)>;
 }
 catch (<ExceptionClass> Ex)
 {
 …
 throw Ex; // Throws the exception, then exits
 }
 …

try
{
 <statement(s)>;
}
catch (<ExceptionClass> Ex)
{
 <statement(s)>;
}
…
finally
{
 <statement(s)>;
}
…

Lecture 11: Exception and Event Handling Elvis C. Foster

119

11.4 Exception Handling in Ada and Other Pascal-like Languages

Ada allows you to define exception handlers via the construct shown in figure 11-9. The following guidelines

apply:

 The statement(s) to handle the exception can be placed in a block (commenced by the keyword begin, and

concluded by the keyword end), or in a procedure, in which case the when-statement simply calls the

procedure.

 The keyword others is a special keyword that is used to mean any kind of exception.

 The ExceptionName must be a valid Ada exception, or a user-defined exception.

 There are four default exceptions: Constraint-Error, Program-Error, Storage-Error, and Tasking-

Error.

 The raise-statement is used to raise (i.e. throw) an exception.

 User-defined exceptions are defined using the construct

Figure 11-9: Defining Exception Handlers in Ada

This approach to exception handling is common to many Pascal-like languages such as Object Pascal and

Oracle’s PL/SQL. Figure 11-10 provides an illustration in Oracle’s PL-SQL. This is a procedure that

manages exceptions in that language.

<ExceptionName> {,<ExceptionName>}: exception

when <ExceptionChoice> {|<ExceptionChoice>}
then <Statement(s)>

ExceptionChoice ::= <ExceptionName> | others

Lecture 11: Exception and Event Handling Elvis C. Foster

120

Figure 11-10: A PL-SQL Procedure that Handles Exceptions

11.5 Event Handling

Event handling is somewhat similar to exception handling in the sense that in both cases, the handler is

implicitly called in response to an occurrence. However, there is a subtle but important difference between

the two: An exception typically originates from hardware/software interactions external to the immediate

code, or from the code itself. In contrast, an event always originates from an external interaction (for

instance via a GUI-based user response) with the executing code.

Typical sources of events are mouse-clicks (single or double) by the end-user, mouse-drags, and mouse-

drops. Such user actions trigger corresponding signals (i.e. events) to the executing program, for which there

must be responses; these responses are coded as event handlers within the code. Following is a brief

overview of how event handling in Java, C#, and C++.

Create Procedure QueryEmp (ThisEmp In emp.empno%Type)
As
 ThisEmpRec emp%RowType;
 SalaryNull Exception;

 Cursor EmpCursor is
 SELECT * FROM emp WHERE empno >= &ThisEmp;

Begin
 Open EmpCursor;
 <<Hunt>>
 Loop
 Fetch EmpCursor Into ThisEmpRec;
 Exit Hunt when EmpCursor%NOTFOUND;
 If ThisEmpRec.Sal IS NULL Then
 Raise SalaryNull;
 End If;
 DBMS_Output.Put_Line(ThisEmpRec.Empno || ' ' || ThisEmpRec.Ename);
 End Loop;
 Close EmpCursor;

Exception
 When No_Data_Found then /* Implicit exception */
 DBMS_Output.Put_Line ('No data found');
 When SalaryNull then /* Explicit exception */
 DBMS_Output.Put_Line ('Salary is null');
 When Others then /* catch all errors */
 DBMS_Output.Put_Line ('There is an execution error');
End;

Lecture 11: Exception and Event Handling Elvis C. Foster

121

11.5.1 Event Handling in Java

As you are probably aware, Java ships with a number of packages. One such package is javax.swing,

consisting of a number of classes that support GUI programming. The javax.swing package contains a

number of Java classes that may be employed by the Java programmer; figure 11-11 lists some of the

important classes along with important methods in these classes.

Each of these classes contains methods for manipulating instances of the related class, and taking

appropriate actions in response to events triggered by end-user actions. Take for instance the JTextField

class. You will observe that this class has several overloaded constructors for instantiating instances of the

class. Observe also that the class has several overloaded methods with the name getAction(). These

overloaded methods are intended to send events back to the executing program based on end-user

interaction with an instance of the JTextField class. Depending on the event received, the programmer can

code appropriate responsive actions in an event handler for the JTextField instance in question.

While this approach is quite straightforward and easy to follow, the main criticism of the language is the

multiplicity of classes that the Java programmer has to familiarize himself/herself with, thus defeating the

objective of understandability as discussed in lecture 1.

Figure 11-11: Commonly Used Methods of Some Basic GUI Component Classes of Java

 The JButton Class (inherits from Object, Component, Container, JComponent and AbstractButton)

Method Comment

public JButton() Creates a JButton instance without text or icon.

public JButton(Action anAction) Creates a JButton with properties from the Action instance specified.

public JButton(Icon anIcon) Creates a JButton instance with an icon.

public JButton(String aString) Creates a JButton instance with text.

public JButton(String aString, Icon anIcon) Creates a JButton instance with text and icon.

protected String paramString() Returns a string representation of the button.

// Other inherited methods

The JLabel Class (inherits from Object, Component, Container, and JComponent)

Method Comment

public JLabel() Creates a JLabel with no specified image or text.

public JLabel(Icon image) Creates a JLabel with an image.

public JLabel(Icon image, int hAlignment) Creates a JLabel with specified image and horizontal alignment.

public JLabel(String text) Creates a JLabel with the specified test.

public JLabel(String text, int hAlignment) Creates a JLabel with specified text and horizontal alignment.

public JLabel(String text, Icon image, int
hAlignment)

Creates a JLabel with specified text, image and horizontal alignment.

public int getHorizontalAlignment() Returns the horizontal alignment along the X axis.

public int getHorizontalTextPosition() Returns the horizontal position of the label's text, relative to its image.

public Icon getIcon() Returns the icon for the label.

public Component getLabelFor() Returns the labelFor field (the component for which the label applies).

public int getVerticalAlignment() Returns the vertical alignment along the Y axis.

public int getVerticalTextPosition() Returns the vertical position of the label's text, relative to its image.

protected String paramString() Returns a string representation of the label.

public void setHorizontalAlignment(int x) Sets the alignment of the label's contents along the X axis.

Lecture 11: Exception and Event Handling Elvis C. Foster

122

Figure 11-11: Commonly Used Methods of Some Basic GUI Component Classes of Java (continued)

 The JLabel Class (continued)

Method Comment

public void setHorizontalTextPosition(int x) Sets the horizontal position of the label's text, relative to its image.

public void setIcon(Icon anIcon) Defines the icon this component will display.

public void setLabelFor(Component aComp) Sets the component that this label is labeling.

public void setText(String newText) Sets the label’s text

public void setVerticalAlignment(int y) Sets the alignment of the label's contents along the Y axis.

public void setVerticalTextPosition(int y) Sets the vertical position of the label's text, relative to its image.

// Other inherited methods

The JTextField Class (inherits from Object, Component, Container, JComponent, and JTextComponent)

Method Comment

public JTextField() Creates a new JTextField instance.

public JTextField(Document aDoc, String Text, int
Cols)

Creates a new JTextField instance that uses the given text storage model and
the given number of columns.

public JTextField(int Cols) Creates a new empty JTextField instance with the given number of columns.

public JTextField(String Text) Creates a new JTextField instance initialized to the specified text.

public JTextField(String Text, int Cols) Creates a new JTextField instance initialized with the specified text and
columns.

public Action getAction() Returns the currently set Action for this ActionEvent source, or null if no Action
is set.

public ActionListener[] getActionListeners() Returns an array of all the ActionListeners added to this JTextField with
addActionListener() method.

public Action[] getActions() Fetches the command list for the editor.

public int getColumns() Returns the number of columns in this JTextField.

public int getHorizontalAlignment() Returns the horizontal alignment of the text along the X axis..

protected String paramString() Returns a string representation of the TJTextField object.

public void removeActionListener(ActionListener l) Removes the specified action listener so that it no longer receives action events
from JTextField object.

public void setColumns(int Cols) Sets the number of columns in this JTextField object, and then invalidate the
layout.

public void setDocument(Document aDoc) Associates the editor with a text document.

public void setFont(Font aFont) Sets the current font.

public void setHorizontalAlignment(int x) Sets the alignment of the JTextField object’s contents along the X axis.

public void setscrollOffset(int x) Sets the scroll offset, in pixels.

// Other inherited methods

The JCheckBox Class (inherits from Object, Component, Container, JComponent, AbstractButton, and JToggleButton)

Method Comment

public JCheckBox() Creates a new unchecked checkbox with no text and no icon.

public JCheckBox(Action anAct) Creates a check box where properties are taken from the Action supplied.

public JCheckBox(Icon anIcon) Creates a new unchecked checkbox with an icon and no text.

public JCheckBox(Icon anIcon, boolean Sel) Creates a check box with an icon and specifies whether or not it is initially
selected.

Lecture 11: Exception and Event Handling Elvis C. Foster

123

Figure 11-11: Commonly Used Methods of Some Basic GUI Component Classes of Java (continued)

 The JCheckBox Class (continued)

Method Comment

public JCheckBox(String Text) Creates an initially unchecked check box with text.

public JCheckBox(String Text, boolean Sel) Creates a check box with text; specifies whether it is initially selected.

public JCheckBox(String Text, Icon anIcon) Creates an initially unchecked check box with text and an icon.

public JCheckBox(String Text, Icon anIcon,
boolean Sel)

Creates an initially unchecked check box with text and an icon; specifies
whether it is initially selected.

protected String paramString() Returns a string representation of the check box.

// Other inherited methods

The JRadioButton Class (inherits from Object, Component, Container, JComponent, AbstractButton, and JToggleButton)

Method Comment

public JRadioButton() Creates a new unchecked radio button with no text and no icon.

public JRadioButton (Action anAct) Creates a radio button where properties are taken from the Action supplied.

public JRadioButton (Icon anIcon) Creates a new unchecked radio button with an icon and no text.

public JRadioButton (Icon anIcon, boolean Sel) Creates a radio button with an icon and specifies whether or not it is initially
selected; no text.

public JRadioButton (String Text) Creates an initially unchecked radio button with text.

public JRadioButton (String Text, boolean Sel) Creates a radio button with text; specifies whether it is initially selected.

public JRadioButton (String Text, Icon anIcon) Creates an initially unchecked radio button with text and an icon.

public JRadioButton (String Text, Icon anIcon,
boolean Sel)

Creates an initially unchecked radio button with text and an icon; specifies
whether it is initially selected.

protected String paramString() Returns a string representation of the radio button.

The JComboBox Class (inherits from Object, Component, Container, and JComponent)

Method Comment

public JComboBox() Creates a combo box with a default data model.

public JComboBox(ComboBoxModel aModel) Creates a combo box that takes it's items from an existing ComboBoxModel
instance.

public JComboBox(Object[] Items) Creates a combo box that contains the elements in the specified array.

public void addActionListener(ActionListener
aListener)

Adds an ActionListener instance.

public void addItem(Object anObject) Adds an item to the item list.

public void addItemListener(ItemListener aListener) Adds an ItemListener instance

public void addPopupMenuListener
(PopupMenuListener aListener)

Adds a PopupMenuListener which will listen to notification messages from the
popup portion of the combo box.

protected void fireActionEvent() Notifies all listeners that have registered interest for notification on this event
type of an action event.

protected void fireItemStateChanged (ItemEvent
anEvent)

Notifies all listeners that have registered interest for notification on this event
type of an item state change.

public void firePopupMenuCancelled() Notifies PopupMenuListeners that the popup portion of the combo box has
been canceled.

Lecture 11: Exception and Event Handling Elvis C. Foster

124

Figure 11-11: Commonly Used Methods of Some Basic GUI Component Classes of Java (continued)

The JComboBox Class (continued)

Method Comment

public void firePopupMenuWillBecomeInvisible() Notifies PopupMenuListeners that the popup portion of the combo box has
become invisible.

public void firePopupMenuWillBecomeVisible () Notifies PopupMenuListeners that the popup portion of the combo box has
become visible.

public Action getAction () Returns the currently set Action for this ActionEvent source, or null if no Action
is set.

public String getActionCommand () Returns the action command that is included in the event sent to action
listeners.

public ActionListener [] getActionListeners() Returns an array of all the ActionListeners added to this JComboBox with the
addActionListener() method.

public int getItemCount() Returns the number of items in the list.

public ItemListener [] getItemListeners () Returns an array of all the ItemListeners added to this JComboBox with
addItemListener().

public int getMaximumRowCount () Returns the maximum number of items the combo box can display without a
scrollbar.

public ComboBoxModel getModel () Returns the data model currently used by the combo box.

public PopupMenuListener []
getPopupMenuListeners ()

Returns an array of all the PopupMenuListeners added to this combo box with
the addPopupMenuListener() method.

public int getSelectedIndex () Returns the first item in the list that matches the given selected item.

public Object getSelectedItem () Returns the current selected item.

public void insertItemAt (Object anObj, int x) Inserts an item into the item list at a given index.

public boolean isEditable () Returns true if the combo box is editable; false otherwise.

public boolean isPopupVisible () Returns true if the popup is visible; false otherwise.

protected String paramString() Returns a string representation of the combo box.

public void removeActionListener (ActionListener
aListener)

Removes an ActionListener.

public void removeAllItems () Removes all items from the item list.

public void removeItem (Object anObj) Removes an item from the item list.

public void removeItemAt (int x) Removes the item at position x. This method works only if the combo box uses
a mutable data model.

public void removeItemListener (ItemListener
aListener)

Removes an ItemListener.

public void removePopupMenuListener
(PopupMenuListener aListener)

Removes a PopupMenuListener.

public void setEditable () Determines whether the combo box field is editable.

public void setEditor (ComboBoxEditor anEditor) Sets the editor used to paint and edit the selected item in the combo box field.

public void setEnabled () Enables the combo box so that items can be selected.

public void setMaximumRowCount (int x) Sets the maximum number of rows the combo box displays.

public void setModel (ComboBoxModel aModel) Sets the data model that the combo box uses to obtain the list of items.

public void setPopupVisible (boolean vFlag) Sets the visibility of the popup.

public void setSelectedIndex (int x) Selects the item at index x.

public void setSelectedItem (Object anObj) Sets the selected item in the combo box display area to the object in the
argument.

public void showPopup () Causes the combo box to display its popup window.

// Other inherited methods

Lecture 11: Exception and Event Handling Elvis C. Foster

125

11.5.2 Event Handling in C#

Event handling in C# is similar to the Java implementation described above. Obviously, the language-

shipped class-names that the programmer uses are different. Additionally, the C# programmer has at his/her

disposal a number of scaffoldings of the .NET framework. Moreover, the event-handling exercise appears to

be a bit more simplified than in a Java environment. This is not surprising, since the designers of C#

benefitted significantly from observing the strengths and challenges of the Java and C++ environments. In

the recommended readings, you will observe that there are two entries that provide further clarification on

event handling in C#.

11.5.3 Event Handling in C++

As is the case for multithreading, the C++ language does not inherently treat the matter of event handling,

but instead defers to IDEs that provide such mechanisms. Fortunately, there are several excellent products

that are available in the marketplace, including C++ Builder, Qt, and Simple DirectMedia Layer (SDL). For

each of these products, you would need to learn the various nuances of the user interface and its interaction

with C++, but that should not pose a significant challenge, especially since they all embrace the basic

concepts of events and event-handling as described earlier. Information on these products is readily

available on the Worldwide Web (WWW). Additionally, there is no shortage of C++ enthusiasts who

provide useful tips on solving common programming problems using the language; one such reference is

included in the recommended readings.

11.6 Summary and Concluding Remarks

Let us summarize what has been covered in this lecture:

 Exception handling is a common strategy that programming languages provide for recovering from

runtime errors.

 C++ employs a very simple but highly effective and efficient exception-handling mechanism that

involves the use of try-blocks and catch-blocks.

 Java adopts the basic C++ approach to exception handling, but adds more sophistication by managing a

complex hierarchy of exception classes for various identified categories of exceptions.

 The approach in Ada and other Pascal-like languages is somewhat different from the approach in C-

based languages: An exception may be raised (i.e. thrown) from various points in the executing

program. Once raised, recovery from the exception must be made by one or more exception handling

statements, each triggered by a when statement. These exception handling statements typically appear

toward the end of the related subprogram in an exception block.

 Event handling is somewhat similar to exception handling in the sense that in both cases, the handler is

implicitly called in response to an occurrence. However, the important difference is that whereas an

exception typically originates from hardware/software interactions external to the immediate code, or

from the code itself, an event always originates from an external interaction (for instance via a GUI-

based user response) with the executing code.

 An event handler provides the code necessary for responding to events received.

 Java provides an elaborate repository of classes whose instances may trigger events. The Java

programmer has the responsibility of coding for these events and taking appropriate actions.

 C# adopts the basic Java approach to event handling, but benefits from scaffoldings provided by the

.NET framework.

 C++ does not inherently treat event handling, but relies on host IDEs running the language to provide

such event handling facilities.

Lecture 11: Exception and Event Handling Elvis C. Foster

126

11.6 Summary and Concluding Remarks (continued)

The information provided here should give you a solid foundation for understanding how issues related to

exception handling and event handling are treated in contemporary programming languages. In our next

lecture, we will examine procedural and functional languages.

11.7 Recommended Readings

[Code Project 2014] Code Project. 2014. “Events and handling in C#.” Accessed on

December 26, 2014. http://www.codeproject.com/Articles/1474/Events-and-event-handling-in-C

[Landheer-Cieslak 2010] Landheer-Cieslak, Ronald. 2010. “Making Life Easier: Event handling in C

and C++.” Accessed December 26, 2014. http://rlc.vlinder.ca/blog/2010/08/event-handling-in-c-and-c/

[Microsoft 2014] Microsoft. 2014. “Handling and Raising Events.” Accessed December 26, 2014.

http://msdn.microsoft.com/en-us/library/edzehd2t%28v=vs.110%29.aspx

[Sebesta 2012] Sebesta, Robert W. 2012. Concepts of Programming Languages 10th Edition. Colorado

Springs, Colorado: Pearson. See chapter 14.

http://www.codeproject.com/Articles/1474/Events-and-event-handling-in-C
http://rlc.vlinder.ca/blog/2010/08/event-handling-in-c-and-c/
http://msdn.microsoft.com/en-us/library/edzehd2t%28v=vs.110%29.aspx

