

Lecture Notes on Programming Languages Elvis C. Foster

103

Lecture 10: Concurrency Control

This lecture discusses how programming languages support concurrent programming. Topics to be covered

include:

 Introduction

 Fundamental Concepts

 Semaphores

 Threading Models

 Java threads

 C# Threads

 C++ Threads

 Summary and Concluding Remarks

Copyright © 2000 – 2018 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any

form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission of the

author.

Lecture 10: Concurrency Control Elvis C. Foster

104

10.1 Introduction

Concurrency can be divided into the following areas:

 Instruction-level: Two or more machine instructions executing simultaneously

 Statement-level: Two or more (language-specific) statements executing simultaneously

 Unit-level: Two or more (language-specific) subprograms executing simultaneously

 Program-level: Two or more programs executing simultaneously

Instruction-level and program-level concurrency are best discussed in a course in computer architecture and/or

operating systems design. Our focus will be statement-level and unit-level concurrency, since these areas relate

to programming language issues.

There are two categories of concurrency:

 Physical Concurrency: Several program units from the same program execute simultaneously on one or

more processors

 Logical Concurrency: A single processor is interleaved to operate in several threads

10.2 Fundamental Concepts

Here are a few fundamental concepts that need to be clarified (your course in Operating Systems Design would

have clarified them but a quick review is useful):

A task (or process) is a subdivision of a program. A task differs from a subprogram in the following ways:

 A task may start implicitly or explicitly; a subprogram has to be called explicitly.

 A program may invoke a task and move on to other tasks; when a subprogram is invoked, control has to

return to the calling statement.

 When a task completes, control may or may not return to the point of invocation; for a subprogram, control

always returns to the invocation point.

Heavyweight tasks operate in their own address space, and have their own runtime stacks. Lightweight tasks

share address space and runtime stacks.

Synchronization has to do with the order in which the tasks operate. Two strategies exist:

 Cooperative Synchronization: If task A invokes task B, it must wait until task B completes before it can

continue.

 Competition Synchronization: Multiple tasks compete for a non-sharable resource (for instance a memory

location). The first task to gain access to the resource holds it until it is finished with it. Other tasks must

wait until the resource is released. Competition then continues.

Lecture 10: Concurrency Control Elvis C. Foster

105

10.3 Semaphores

A semaphore is a non-negative integer variable, used as a flag that controls access of a critical region. The

idea of semaphores was introduced by Dijkstra in 1965.

Dijkstra defined two operations to manipulate the semaphore: The P-operation (from the Dutch

word “proberan”, which means, to test) allows a test; the V-operation (from the Dutch word “verhogen”

which means, to increment) increments the semaphore.

If s is a semaphore variable, then the V-operation [increment] on s is given by
V(s): s:= s+1

This necessitates a fetch, an increment and a store sequence. The V-operation is indivisible — it must be

performed in a single machine cycle to avoid deadlock.

The P-operation [test] on s is to test the value of s, and if it is not zero, to decrement it by 1. Thus
P(s): If s>0 then s:= s-1

This necessitates a test, fetch, decrement and store sequence. Again, the sequence must be indivisible in a

machine cycle.

A process can only access a critical region if its semaphore is non-zero (i.e. s>0). When accessed, the V-

operation [increment] takes effect for that critical region. When the process concludes use of a critical

region, it issues a V-operation [increment] on the semaphore, thus s:= s+1

The end result is that the concept of mutual exclusion is enforced — no two processes can access a critical

region at the same time. For this reason, the name given to the semaphore variable in the literature is mutex.

Mutual exclusion is automatic for sequential processes, but for parallel processes, it must be explicitly stated

and maintained, hence semaphores.

Lecture 10: Concurrency Control Elvis C. Foster

106

10.4 Threading Models

Four common threading models are many-to-one, one-to-many, one-to-one, and many-to-many. Figure

10-1 provides graphic illustrations of these models. Full treatment is deferred to your course in Operating

System Design. However, a cursory overview is provided here.

Many-to-One: In many-to-one (M:1) threading, several user threads are mapped to a simple kernel thread.

One-to-One: In one-to-one (1:1) threading, each user thread is mapped to a kernel thread. It provides more

concurrent processing than the many-to-one model.

Many-to-Many: The many-to-many (M:M) model multiplexes several user threads to a smaller or equal

number of kernel threads (the number of kernel threads may be application dependent or machine

dependent).

One-to Many: In the one-to-many (1:M) model a single user thread may migrate to different processors, in

order to be executed in the most efficient manner.

Lecture 10: Concurrency Control Elvis C. Foster

107

Figure 10-1 Threading Models

Kernel Thread 1:M User

Thread

K

K

K

Kernel Thread

Kernel Thread

Kernel Thread

1:1

User

Thread
K

K

K

M:1 Kernel Thread

User Thread

K

Kernel

Thread
M:M

User

Thread
K

K

K

Lecture 10: Concurrency Control Elvis C. Foster

108

10.5 Java Threads

Java supports logical concurrency of lightweight tasks via threads in the following way:

 The Thread class is a base class consisting of two methods: The run() method describes the actions to

be taken, and is normally overridden in subclasses. The start() method causes the thread to start

execution. Other methods of interest include interrupt(), sleep (long x), and join(), and join(long x).

Note, the join(…) method waits for the thread to die.

 To have methods that run concurrently, the programmer is required to create a class that inherits the

Thread class. Alternately, create classes that implement the Runnable interface. Then override the run()

method and specify the desired statements. Depending on the level of concurrent processing, you can

specify several similar subclasses.

 Create a driver class that manipulates instances of the classes defined for concurrent processing.

Competition synchronization is achieved by specifying the synchronized keyword as a qualifier on each

method that conforms to this regime. This means that once the method begins execution, that execution will

complete before any other method begins execution.

Cooperative synchronization is achieved via appropriate invocation of the wait(long x), wait(), notify(), and

notifyAll() methods of the Object class.

10.6 C# Threads

C# handles threads in a manner that is similar to Java, but with some differences as summarized below:

 C# supports physical concurrency. Thus, any C# method can run its own thread by simply creating a

Thread object.

 The Thread constructor must be sent an instantiation of a specially predefined class called ThreadStart,

which in turn requires as its argument, the name of the method creating a thread.

Example:

Synchronization is achieved in any of three ways:

 The Interlock class allows you to manage a shared object or variable in a manner that is similar to the

management of semaphores. In contains an Increment (…) method and a Decrement(…) method.

 The lock statement is used to flag a critical section of code in a thread.

 The Monitor class is slightly more sophisticated class for more intricate concurrency situations.

public void MyMethod()

{…}

// …

Thread myThread = new Thread(new ThreadStart(MyMethod));

// …

Lecture 10: Concurrency Control Elvis C. Foster

109

10.7 C+ Threads

C++ does not have its own built-in threading mechanism; instead, it relies on and utilizes the multithreading

features of the host operating system on which it runs. Fortunately, the worldwide C++ online community has

written and provided many add-ons and tutorials on how to implement multi-threaded applications using C++.

In the recommended readings at the end of the lecture, two such resources are provided.

10.8 Summary and Concluding Remarks

Here is a summary of what has been covered in this lecture:

 Concurrency can be divided into the following areas: instruction-level, statement-level, unit-level, and

program-level.

 Two broad categories are physical concurrency and logical concurrency.

 Tasks are subdivisions of programs and may be heavyweight or lightweight.

 Synchronization relates to the order in which the tasks operate. Two prominent strategies are cooperative

synchronization and competition synchronization.

 A semaphore is a non-negative integer variable, used as a flag that controls access of a critical region.

 Four common threading models are many-to-one (M:1), one-to-many (1:M), one-to-one (1:1), and

many-to-many (M:M).

 Java supports logical concurrency of lightweight tasks via threads. C# threads are similar to Java’s but with

a few points of differences. C++ piggy-backs on the multithreading features of the host operating system on

which it runs.

At first glance, you may be tempted to pounce on the failure of C++ to have its own multithreading mechanism

and not piggy-back on the underlying operating system on which the language runs. On closer examination,

you will realize that this is not a bad idea; it’s part of a strategy that renders the C++ compiler one of the leanest

and most efficient in its category.

As with each topic discussed in this course, you are encouraged to use the basic principles discussed as a set of

guidelines for launching your own probe into other programming languages. The next lecture takes on the topic

of exception handling.

Lecture 10: Concurrency Control Elvis C. Foster

110

10.9 Recommended Readings

[Codebase 2014] Codebase.eu. 2014. “Creating multi-threaded C++ code.” Accessed on

December 24, 2014. http://codebase.eu/tutorial/posix-threads-c/

[Pratt & Zelkowitz 2001] Pratt, Terrence W. and Marvin V. Zelkowits. 2001. Programming Languages:

Design and Implementation 4
th

 Edition. Upper Saddle River, NJ: Prentice Hall. See chapter 11.

[Sebesta 2012] Sebesta, Robert W. 2012. Concepts of Programming Languages 10
th

 Edition. Colorado

Springs, Colorado: Pearson. See chapter 13.

[Tutorialspoint 2014] Tutorialspoint. 2014. “C++ Multithreading.” Accessed December 24, 2014.

http://www.tutorialspoint.com/cplusplus/cpp_multithreading.htm

http://codebase.eu/tutorial/posix-threads-c/
http://www.tutorialspoint.com/cplusplus/cpp_multithreading.htm

