

Lecture Notes on Programming Languages Elvis C. Foster

75

Lecture 08: Support for Abstract Data Types

Support for abstract data types (ADTs) is critical in contemporary programming. This lecture discusses the topic

under the following subheadings:

 Introduction

 Design Comparisons

 Array-lists and Vectors

 Linked-lists

 Other ADTs

 Summary and Concluding Remarks

Copyright © 2000 – 2018 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any

form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission of the

author.

Lecture 8: Support for Abstract Data Types Elvis C. Foster

76

8.1 Introduction

An abstract data type (ADT) is a programming construct with a defined set of data items, and a set of possible

operations on those data items. In contemporary programming, ADTs are implemented as classes and/or packages.

Because of the nature of ADTs in contemporary programming, we typically look for their support in object-

oriented programming languages (OOPLs).

Common ADTs as discussed in your course in Data Structures and Algorithms:

 Dynamic Lists

 Linked Lists

 Stacks

 Queues

 Binary Trees

 Binary Search Trees (BSTs)

 Heaps

 B-trees

 Hash tables

 Graphs

Common sort algorithms include the following:

 Straight Selection-sort

 Exchange Selection-sort

 Insertion-sort

 Bubble –sort

 Quick-sort

 Merge-sort

 Tree-sort (as in BST)

 Heap-sort

In your course in Data Structures and Algorithms, you would have learned how to construct, implement, and test

these ADTs and algorithms in at least one programming language (but preferably multiple programming

environments). In that course, you would have also learned how to analyze these algorithms for efficiency.

In this lecture, we shall look at implementation of these ADTs but from a much broader perspective. Here, our

concern is not implementation details in any given language, but rather, how different programming languages

provide support for these ADTs. As you look at a new programming language, this broadened focus should prepare

you nicely for learning any language within a short timeframe (which by the way is an important objective of the

course). The lecture gets you started but as usual, I will not be doing all the work; rather, you will be given

important guidelines in your language exploration.

Lecture 8: Support for Abstract Data Types Elvis C. Foster

77

8.2 Design Comparisons

The obvious starting point is the construction of a class. How is this done in the new language that you are

probing? Let’s start with the familiar before launching into the unknown. Figure 8-1 shows the basic Java class

anatomy, while figure 8-2 shows the C++ class anatomy. Take some time to familiarize yourself, or refresh

your memory on class definition in both languages. Notice the similarities as well as the differences.

Figure 8-1: Anatomy of a Java Class

JavaClass ::=
public | private | protected class <ClassName>
[extends<ClassName>][implements<InterfaceName>[,…<InterfaceN>]]
{
 // Data Item(s)
 …
 //Member Methods
 <Modifier> <ClassName> (<Parameter(s)>) // the constructor
 {
 // …
 }
 // … Additional methods

}

Method ::=
<Modifier><ReturnType><MethodName>(<Parameters>)
{
 … // Body of Method
}

Modifier ::=
[final] public | private | protected [static] [abstract]

Each keyword is important and therefore needs some clarification:
 The public keyword means that the method is available from anywhere in the program or from another

class.
 The private keyword means that only instances of the class has access to this method.
 The protected keyword means that the method is protected within the class hierarchy only. It will be further

clarified later in the course (lecture 6).
 The static keyword means that the method can be (and is of often) used without an instance of the class

being created. In such case the class-name takes the place of the instance name.
 Keyword abstract means that the class or method is abstract. An abstract method has no statement (s).

An abstract class is one for which instances cannot be created. It consists of at least one abstract method.
 The keyword class simply indicates to the Java compiler that a class is being defined.
 The final keyword means that the class or method cannot be inherited.

Lecture 8: Support for Abstract Data Types Elvis C. Foster

78

Figure 8-2: Syntax for Defining a C++ Class

One obvious difference you will notice between the C++ and the Java class definitions is that the syntax rules

are different; this is expected. Another more far-reaching difference has to do with the principle of inheritance.

From the definitions you can clearly see that Java supports inheritance from a single super-class, while C++

supports multiple inheritances from different super-classes.

Another not-so-obvious but very significant difference (but one you are no doubt familiar with) has to do with

the specification of component methods of a class: Java prefers the term method(s), and insists that these

component methods be part of the definitional structure of the class; in other words, they must be specified

when the class is being defined. C++ prefers the term member function(s). Moreover, C++ provides a

mechanism for declaring the member functions at class definition (via function prototyping), but not specifying

the details of their internal code. The language gives the programmer the flexibility of specifying detail codes

for these member functions at a subsequent time, and such detailed code may or may not be part of the file with

the class definition. To tie the member functions back to their host class, the scope resolution operator (::) is

used.

<ClassDeclaration> :: =
class <ClassName> [: <Modifier> <BaseClass1> [… , <Modifier> <BaseClass1>]]
{
 [private:]

<Private Members> /* data items and function prototypes*/
 [public:]

<Public Members>] /* data items and function prototypes */
[protected:]
<Protected Members>] /* data items and function prototypes */

};

/* Actual function definitions follow */
// …

<MemberFunctionSpecification> ::=
<ReturnType> <Class Name> :: <MemberFunctionName> ([<Parms>])
{
…
}

<FunctionDefinition>::=
<ReturnType> <FunctionName> ([<Parameter>] [*…,<Parameter>*])
{
 <FunctionBody>

}

<FunctionPrototype>::=
<ReturnType> <FunctionName> ([<Parameter>] [*…,<Parameter>*])

Modifier ::=
public | private | protected

Lecture 8: Support for Abstract Data Types Elvis C. Foster

79

8.2 Design Comparison (continued)

Let us illustrate these observations in an example: Figure 8-3 shows the UML class diagram for a

LibraryPatron class to represent patrons who may use the services of a library. Figure 8-4a shows a simple

Java code for this and figure 8-4b shows the equivalent C++ code. Observe that there are various areas of

similarity between the Java coding and the C++ coding. This should not surprise you, since as you are aware,

Java was written mainly in C++. However, there are some differences as explained below.

Figure 8-3: The UML Diagram of the LibraryPatron Class

 LibraryPatron

protected int pNumber
protected String pName
protected String pMajor
private String pStatus

public LibraryPatron()
public LibraryPatron(int thisNumber)
public void modify(LibraryPatron thisPatron)
public void inputData(int x)
public String printMe()
public int getNumber()
public String getStatus()

Lecture 8: Support for Abstract Data Types Elvis C. Foster

80

Figure 8-4a Java Code for the LibraryPatron Class

// LibraryPatron.java: Allows for the definition of Library Patron objects.
// **
package adtDemo;
import javax.swing.JOptionPane; // This package facilitates dialog boxes, etc.

public class LibraryPatron
{
 // Define Data Items
 protected int pNumber; protected String pName, pMajor;
 private String pStatus;

 // Constructors
 public LibraryPatron() // Default constructor
 {
 pNumber = 0; pName = "No Name"; pMajor = "No Major"; pStatus = "Excellent. Noting outstanding";
 } // End Constructor
 public LibraryPatron(int thisNumber) // Overloaded Constructor
 {
 pNumber = thisNumber; pName = "No Name"; pMajor = "No Major"; pStatus = "Excellent. Noting outstanding";
 } // End Overloaded Constructor

 // Important setters
 public void modify(LibraryPatron thisPatron) // Modification Method
 {
 pNumber = thisPatron.pNumber; pName = thisPatron.Name; pMajor = thisPatron.pMajor; pStatus = thisPatron.pStatus;
 } // End of Modification Method

 public void inputData(int x) //InputData Method
 {
 String PatronHeading = "Lambert Cox Library Patron Data Entry";
 String pNumberString = JOptionPane.showInputDialog(null, "Please Enter Patron Number of Patron #" + x +": ", +
 PatronHeading, JOptionPane.QUESTION_MESSAGE);
 pNumber = Integer.parseInt(pNumberString);
 pName = JOptionPane.showInputDialog(null, "Please Enter Name of Patron #" + x +": ", PatronHeading, +

JOptionPane.QUESTION_MESSAGE);
 pMajor = JOptionPane.showInputDialog(null, "Please Enter Major of Patron #" + x +": ", PatronHeading, +

JOptionPane.QUESTION_MESSAGE);
 pStatus = JOptionPane.showInputDialog(null, "Please Enter Status of Patron #" + x +": ", PatronHeading, +

JOptionPane.QUESTION_MESSAGE);
 } // End of InputData Method

 // Important getters
 public String printMe() // The printMe method
 { String printString = "Patron Number: " + PatronNumber + "\n" + "Name: " + Name + "\n" + "Major: " + Major + "\n" + "Status: " + pStatus;
 return printString;
 } // End printMe Method

 public int getNumber() // getNumber Method
 { return pNumber; } // End of getNumber Method

 public String getStatus() // getStatus Method
 { return pStatus; } // End of getStatusMethod

} // End of LibraryPatron

Lecture 8: Support for Abstract Data Types Elvis C. Foster

81

Figure 8-4b C++ Code for the LibraryPatron Class

 // LibraryPatron.java: Allows for the definition of Library Patron objects.
// **
#include <cstdlib> #include <iostream>
#include<ctype.h> #include<string.h>
using namespace std;

class LibraryPatron
{
 private: // Private data items
 string pStatus;
 protected: // Protected data items
 int pNumber;
 string pName, pMajor;

 // Public prototypes of member functions
 public:
 LibraryPatron();
 LibraryPatron(int thisNumber);
 void modify(LibraryPatron thisPatron);
 void inputData(int x);
 string printMe();
 int getPatronNumber();
 string getPatronStatus();
} // End of LibraryPatron Declaration

//… Specification of Member Functions — sometimes conveniently placed in another file
LibraryPatron :: LibraryPatron() // Default constructor
{ pNumber = 0; pName = "No Name"; pMajor = "No Major"; pStatus = "Excellent. Noting outstanding"; }
LibraryPatron :: LibraryPatron(int thisNumber) // Overloaded constructor
{ pNumber = thisNumber; pName = "No Name"; pMajor = "No Major"; pStatus = "Excellent. Noting outstanding"; }

 // Important setters
void LibraryPatron :: modify (LibraryPatron thisPatron) // the modify member function
{
 pNumber = thisPatron.pNumber; pName = thisPatron.Name; pMajor = thisPatron.pMajor; pStatus = thisPatron.pStatus;
} // End of modify member function

void LibraryPatron :: inputData(int x) // the inputData member function
{
 string PatronHeading = "Lambert Cox Library Patron Data Entry"; cout << patronHeading + “\n”;
 cout << "\nPlease Enter Patron Number for Patron #" + x +": ", cin >> pNumber; getchar();
 cout << "\nPlease Enter Name for Patron #" + x +": ", cin >> pName;
 cout << "\nPlease Enter Major for Patron #" + x +": ", cin >> pMajor;
 cout << "\nPlease Enter Status for Patron #" + x +": ", cin >> pStatus;
} // End of inputData member function

// Important getters
string LibraryPatron :: printMe() // the printMe member function
{ string printString = "Patron Number: " + PatronNumber + "\n" + "Name: " + Name + "\n" + "Major: " + Major + "\n" + "Status: " + pStatus;
 return printString;
} // End of printeMe member function

int LibraryPatron :: getNumber() // the getNumber member function
{ return pNumber; } // End of getNumber member function

string LibraryPatron :: getStatus() // the getStatus member function
{ return pStatus; } // End of getStatus member function

Lecture 8: Support for Abstract Data Types Elvis C. Foster

82

8.2 Design Comparison (continued)

Figure 8-5 provides a summary of the main differences between C++ class implementation and Java class implementation.

When learning a new language, it is a good idea to construct a comparison list like this, where on each programming

principle of concern, you compare the implementation detail of the language you are learning with that of a language

which you are very familiar with. This technique helps you to relate the new language to something that you are familiar

with.

Figure 8-5: Comparison of Java Class Implementation with C++ Class Implementation

Exercise 1: Try finding out how classes are supported in languages such as C#, Ada, Python, and Ruby. Set up

your comparison grids for various areas of concern to you.

8.3 Array-lists and Vectors

Recall from your study of Data Structures and Algorithms, that array-lists and vectors are two forms of dynamic

lists that are supported in many languages.

8.3.1 Array-Lists

An array-list is equivalent to a variable-length array that allows manipulation (insertion, modification, or deletion)

at any point in the list; moreover, the list may shrink or grow as required. In Java, an array-list is best implemented

by creating an instance of the ArrayList class. Recall that the Java ArrayList class is an ADT with instances of

Java’s Object class, and various methods for manipulating the instances. Figure 8-6a provides the UML diagram of

the ArrayList class. Referring to the LibraryPatron class of figure 8-3, figure 8-6b illustrates how an array-list of

LibraryPatron instances may be declared and created in Java. From here, you should be able to figure out (either

by recollection or analysis of figure 8-6a) how to manipulate the list.

Java C++

Each class must be defined in a separate file with
the same name as the class-name

A program file may or may not contain zero or more class definitions.
Moreover, the program-file may carry a different name from the class
name.

A class is made up of data items and/or methods. A class is made up of data items and/or member functions.

The methods are defined as part of the class
definition.

The member functions may or may not be defined in the class declaration.
The class declaration may contain member function prototypes instead of
detailed function definitions (this is the preferred approach). The detailed
function definitions typically follow the class declaration.

Multiple inheritance is not supported Multiple inheritance is supported

Interfaces are supported Interfaces are not supported.

Lecture 8: Support for Abstract Data Types Elvis C. Foster

83

Figure 8-6a: UML Diagram for the Java ArrayList Class

ArrayList

protected transient int modCount // The number of times the list has been structurally modified

public ArrayList() // Creates an empty list
public ArrayList(int initialCap) // Creates a list of the specified initial length

public boolean add(Object obj)// Appends an object at the end of the array list
public void add(int x, Object obj)// Inserts an object at the specified position
public void clear()// Empties the list
public Object clone() // Returns a shadow copy of the array list.
public boolean contains(Object obj)// Checks whether the specified object is in the list
public void ensureCapacity(int minCap) // Checks and if necessary, increases the list size to the

specified length
public Object get(int x) // Returns the object at the specified location in the list
public int indexOf(Object obj)// Returns the first position of the specified object in the list, or –1 if

the object is not found.
public boolean isEmpty() // Checks whether the list is empty
public int lastIndexOf(Object obj)// Returns the last position of the specified object in the list, or –1 if

the object is not found.
public boolean isEmpty() // Returns true if the list is empty; false otherwise.
public boolean remove(Object obj)//Removes the first occurrence of the specified object from the list
public Object remove(int x)//Removes the object at the specified position from the list
protected void removeRange(int x, int y) // Removes all nodes between indexes x and y exclusive.
public booolean set(int x, Object obj) // Overwrites the object at the specified position with the

specified object
public int size()// Returns the length of the list
public Object[] toArray()// Returns an array containing all items in the list in the correct order
public void trimToSize() // Trims the capacity of the array list to its current size.

// Other methods inherited from classes AbstractList, AbstractCollection, and Object
// Other methods inherited from interface List

Object

AbstractList

AbstractCollection

Serializable // Interface

Cloneable // Interface

Iterable // Interface

Collection // Interface

List // Interface

RandomAccess // Interface

Lecture 8: Support for Abstract Data Types Elvis C. Foster

84

Figure 8-6b: Declaring and Creating a Java ArrayList of LibraryPatron Instances

As mentioned in lecture 3, C++ handles array-lists in a much simpler but more elegant way: You can create a

pointer to a base type, and manipulate the implied list as an array. Referring to the LibraryPatron class of

figure 8-3, we can declare a pointer to LibraryPatron, and manipulate the resultant list as an array. Figure 8-7a

provides the C++ syntax for creating such a list and allocating memory for it. And figure 8-7b illustrates how

one could use this guideline to create and manage a dynamic list of LibraryPatron instances.

Figure 8-7a: C++ Syntax for Defining a Dynamic List, and Allocating Memory for it

package adtDemo;
import javax.swing.JOptionPane; // This package facilitates dialog boxes, etc.
import java.util.ArrayList;

public class PatronsArrayListMonitor
{
 // Global Data Items
 public static ArrayList PatronsList;
 // . . .
 public static void main(String[] args)
 {
 // . . .
 initializeList(); // . . .
 inputPatrons();
 // …
 } // End of main method

 // Initialize Method
 public static void initializeList()
 {
 PatronsList = new ArrayList(0); // Creates a default array-list of LibraryPatron objects
 // . . .
 } // End of initializeList method

 public static void inputPatrons()
 {
 int numberOfPatrons, x;
 LibraryPatron currentPatron;
 numberOfPatrons = Integer.parseInt(JOptionPane.showInputDialog(null, "Number of Patrons: ", HEADING, +

JOptionPane.QUESTION_MESSAGE));
 PatronsList.ensureCapacity(PatronsList.size() + numberOfPatrons); // Ensure correct size of list
 for (x =1; x <= numberOfPatrons; x++)
 {
 currentPatron = new LibraryPatron();
 currentPatron.inputData(x); // Prompt For and Accept LibraryPatron Data
 PatronsList.add(x-1, currentPatron);
 }; // End For
 } // End of inputPatrons Method

} // End of PatronsArrayListMonitor class

DynamicListDefinition ::=
<BaseType>* <TargetList>; // You must specify the base-type and the name of the target-list
// …
<TargetList> = new <BaseType>”[“<Length>”]”; // You must specify the amount of items

Lecture 8: Support for Abstract Data Types Elvis C. Foster

85

Figure 8-7b: Declaring and Creating Dynamic List of LibraryPatron Instances in C++

8.3.2 Vectors

Like an array-list, a vector is an ADT that maintains a dynamic list of objects belonging to a specified base

type/class. Generally speaking, the vector provides more flexibility in its range of services provided to the

programmer. Again using Java as a frame of reference, figure 8-8a shows the UML diagram for the Java Vector

class. Following on, figure 8-8b illustrates how vector of LibraryPatron instances may be declared and created in

Java. As you view figures 8-8a and 8-8b, notice the strong similarities between the ArrayList class and the Vector

class, as well as their related applications.

// …
typedef LibraryPatron* PatronsList;
// …
// Obtain list of patrons
int pLim = 0;
 PatronsList pList = inputPatrons(pLim);
// …
PatronsList inputPatrons(int &lSize)
{
 cout << "\n\nPlease enter the number of patrons required: ";
 cin >> lSize; getchar();
 PatronsList rList = new LibraryPatron[lSize]; // Allocate space for lSize LibraryPatron objects

 // Prompt for information on each student
 for (int x = 1; x <=lSize; x++)
 { rList[x-1] = LibraryPatron(); // Instantiate the item
 rList[x-1].inputData(x); // Obtain information for the item
 }
 return rList;

} // End of inputPatrons Function

Lecture 8: Support for Abstract Data Types Elvis C. Foster

86

Figure 8-8a: UML Diagram for the Java Vector Class

Object

AbstractList

AbstractCollection

Serializable // Interface

Cloneable // Interface

Iterable // Interface

Collection // Interface

List // Interface

RandomAccess // Interface

public Vector () // Creates an empty list
public Vector (int initialCap) // Creates a list of the specified initial length
public Vector (int initialCap, int capacityIncrement) // Creates a list of the specified initial length and capacity increment

public boolean add(Object obj)// Appends an object at the end of the vector
public void add(Object obj)// Appends an object at the end of the vector and increments the size by one
public void add (int x, Object obj)// Inserts an object at the specified position
public void clear()// Empties the list
public Object clone() // Returns a shadow copy of the array list.
public boolean contains(Object obj)// Checks whether the specified object is in the list
public void ensureCapacity(int minCap) // Checks and if necessary, increases the list size to the specified length
public Object get (int x) // Returns the object at the specified location in the list
public int indexOf (Object obj) // Returns the first position of the specified object in the list, or –1 if the object not found.
public boolean isEmpty() // Checks whether the list is empty
public int lastIndexOf(Object obj) // Returns the last position of the specified object in the list, or –1 if the object not found.
public boolean isEmpty() // Returns true if the list is empty; false otherwise.
public boolean remove (Object obj)//Removes the first occurrence of the specified object from the list
public Object remove (int x)//Removes the object at the specified position from the list
protected void removeRange(int x, int y) // Removes all nodes between indexes x and y exclusive.
public booolean set (int x, Object obj) // Overwrites the object at the specified position with the specified object
public int capacity () // Returns the length of the list
public int size () // Returns the length of the list
public void setSize(int newSize) // Set the size of vector to the size specified
public Object[] toArray()// Returns an array containing all items in the list in the correct order
public void trimToSize() // Trims the capacity of vector to its current size.

// Other methods inherited from classes in the inheritance hierarchy

Vector

protected transient int capacityIncrement // The size by which the vector increases when necessary
protected transient int elementCount // The number of items in the vector

protected Object [] elementData // The array into which the items are stored

Lecture 8: Support for Abstract Data Types Elvis C. Foster

87

Figure 8-8b: Declaring and Creating a Java Vector of LibraryPatron Instances

In the interest of comparison, let us now examine how C++ handles vectors. Figure 8-9a provides the basic

C++ syntax for declaring a vector. This is followed by figure 8-9b, which shows a list of important member

functions in the vector class. No revisiting the LibraryPatron class of figure 8-3, we can declare a vector of

LibraryPatron objects. Figure 8-9c illustrates how one could use this guideline to create and manage such a

vector.

package adtDemo;
import javax.swing.JOptionPane; // This package facilitates dialog boxes, etc.
import java.util.Vector;

public class PatronsVectorMonitor
{
 // Global Data Items
 public static Vector PatronsList;
 // . . .
 public static void main(String[] args)
 {
 // . . .
 initializeList(); // . . .
 inputPatrons();
 // …
 } // End of main method

 // Initialize Method
 public static void initializeList()
 {
 PatronsList = new Vector(0); // Creates a default array-list of LibraryPatron objects
 // . . .
 } // End of initializeList method

 public static void inputPatrons()
 {
 int numberOfPatrons, x;
 LibraryPatron currentPatron;
 numberOfPatrons = Integer.parseInt(JOptionPane.showInputDialog(null, "Number of Patrons: ", HEADING, +

JOptionPane.QUESTION_MESSAGE));
 PatronsList.setSize(PatronsList.size() + numberOfPatrons); // Ensure correct size of list
 // PatronsList.ensureCapacity(PatronsList.size() + numberOfPatrons); // This would also work as setSize(…)
 for (x =1; x <= numberOfPatrons; x++)
 {
 currentPatron = new LibraryPatron();
 currentPatron.inputData(x); // Prompt For and Accept LibraryPatron Data
 PatronsList.add(x-1, currentPatron);
 }; // End For
 } // End of inputPatrons Method

} // End of PatronsVectorMonitor class

Lecture 8: Support for Abstract Data Types Elvis C. Foster

88

Figure 8-9a: C++ Syntax for Defining a Vector

Figure 8-9b: Selected Member Functions of the vector Class

VectorDefinition ::=
vector “<”<BaseType>”>” <VectorName>;

Note:
1. The angular bracket that encloses the base type is required as prat of the syntax, hence the use of quotation marks.
2. The base type specified may be any valid primitive or advanced data type.

Member Function Description

begin() Returns the iterator to the beginning of the vector.

end() Returns the iterator to the beginning of the vector.

size() Returns an unsigned integer with the size (i.e. length) of the vector.

max_size() Returns an unsigned integer with the maximum possible size (i.e. length) of the vector.

resize(. . .)

Resizes the vector to the number items indicated by the first argument; the second argument if specified,
contains the default value for each element after the original size has been reached; if the second
argument is not specified, additional elements after the original size is reached, are assigned the default
value for the base type; returns void.

capacity()
Returns the storage space (in terms of number of elements) currently allocated for the vector; typically
varies between size() and max_size().

empty() Returns true or false, indicating whether the vector is empty or not

reserve(. . .)
Requests to ensure a minimum capacity for the vector; the argument specifies the minimum capacity;
returns void.

shrink_to_fit() Requests that the vector capacity be shrunk to be equal to its current size.

operator []
Overloaded operator [] to access the particular element at the specified relative location in the vector; the
argument is identical to an array subscript.

at(. . .)
Returns the particular element at the specified relative location in the vector; the argument is identical to an
array subscript.

front() Returns the element at the front of the vector, i.e., the first element.

back() Returns the element at the back of the vector, i.e., the last element.

push_back(. . .) Inserts an element at the back of the vector; the argument must be of the base type of the vector.

insert(. . .)

Inserts an element at the iterator position and returns the iterator position; the first argument states the
iterator position; the second argument is the element to be inserted. Example: If v is a vector of integers,
then two valid insertions are as follows:
iterator it = v.insert(v.begin(), 100); it = v.insert(v.begin() +1, 300);
Other overloaded forms of this member function exists.

pop_back() Removes the last element from the vector; returns void.

erase(. . .)
Removes the element(s) indicated by the argument, which is specified in terms of iterator positions, e.g.
v.begin(), v.begin() + 3, etc., where v represents a vector; returns void.

swap(. . .)
Exchanges the contents of the current vector with those of the vector supplied as the argument; returns
void. Example: If vi and v2 are two vectors, swap them vie the statement v1.swap(v2);

clear() Removes all elements from the vector; returns void.

Lecture 8: Support for Abstract Data Types Elvis C. Foster

89

Figure 8-9c: Declaring and Creating a C++ Vector of LibraryPatron Instances

// …
typedef vector <LibraryPatron> PatronsList;
// …

// Obtain list of patrons
int pLim = 0;
PatronsList pList = inputPatrons(pLim);

// …

PatronsList inputPatrons(int &lSize)
{
 LibraryPatron currentPatron; PatronList rList;
 cout << "\n\nPlease enter the number of patrons required: ";
 cin >> lSize; getchar();

 // Prompt for information on each patron
 for (int x = 1; x <=lSize; x++)
 { currentPatron = LibraryPatron(); // Instantiate the item
 currentPatron.inputData(x); // Obtain information for the item
 rList.push_back(currentPatron);
 }
 return rList;

} // End of inputPatrons Function

Lecture 8: Support for Abstract Data Types Elvis C. Foster

90

8.4 Linked Lists

From the knowledge and skills acquired in your Data Structures and Algorithms course, recall that a linked-list

is a data structure with the following properties:

 Each node belongs to a particular base type.

 Each node has a pointer to the next node in the list.

 It is often advantageous to specially label the first and last nodes in the list; we will denote them as First

and Last respectively.

8.4.1 Linked List in Java

In Java, a programmer may construct a linked-list in a variety of ways as summarized below:

 Build from Scratch: Create an instance class if necessary to store the pertinent information, a node class,

where each node contains the pertinent information, and a pointer to the next node in the list. Then create a

linked-list class that manipulates instances of the node class, according to the various desired operations.

Then create a driver (controller) class (the stack-class can be implemented as your driver class, but it is

better to keep them separate).

 Build from the ArrayList or Vector Class: Create an instance class if necessary to store the pertinent

information, a generic linked-list class that manipulates an instance of Java’s generic ArrayList or Vector

class to store instances of the pertinent information, according to the various linked-list operations desired.

Then create a driver (controller) class (the linked-list class can be implemented as your driver class, but it is

better to keep them separate).

 Build from the LinkedList Class: Create an instance class if necessary to store the pertinent information.

Then create a driver (controller) class that implements the linked-list as an instance of the LinkedList class,

and containing the pertinent information.

Revisiting the LibraryPatron class of earlier discussions (see figure 8-3), figure 8-10a shows how you may

design from scratch, a linked-list of LibraryPatron instances. The figure omits the code snippet for the driver

class; it is assumed that you understand that this would be required as well.

With your knowledge of data Structures and Algorithms, you should be able to use the guidelines above to

create and employ a generic linked-list from via the ArrayList or Vector class; this is left as an exercise for

you. You may also achieve a similar objective by making use of Java’s generic LinkedList class. The UML

diagram for the LinkedList class is shown in figure 8-10b; further exploration is left as an exercise for you.

Lecture 8: Support for Abstract Data Types Elvis C. Foster

91

Figure 8-10a: Java Construction of a Linked-list for LibraryPatron Instances

// Code snippet for constructing a linked-list of LibraryPatron instances
package adtDemo;
import javax.swing.JOptionPane; // This package facilitates dialog boxes, etc.

public class PatronNode
{
 LibraryPatron nInfo;
 PatronNode nNext;

// Methods of the node class would follow this point
};

// Code snippet for constructing a linked-list of LibraryPatron instances
package adtDemo;
import javax.swing.JOptionPane; // This package facilitates dialog boxes, etc.

public class PatronL
{
 PatronNode nFirst, nLast;
 int length;

// Methods of the linked list class would follow this point
}

// Code snippet for constructing a linked-list of LibraryPatron instances
package adtDemo;
import javax.swing.JOptionPane; // This package facilitates dialog boxes, etc.

public class LibraryPatron
{
 protected int pNumber; protected String pName, pMajor;
 private String pStatus;

// Methods of the instance class would follow this point
}

Lecture 8: Support for Abstract Data Types Elvis C. Foster

92

Figure 8-10b: Abbreviated UML Diagram for the LinkedList Class

LinkedList

protected transient int modCount // The number of times the list has been structurally modified

public LinkedList() // Creates an empty list
public LinkedList(int initialCap) // Creates a list of the specified initial length

public boolean add(Object obj)// Appends an object at the end of the list
public void add(int x, Object obj)// Inserts an object at the specified position
public void addFirst(Object obj)// Inserts an object at the beginning of the list
public void addLast(Object obj)// Appends an object at the end of the list

public void clear()// Empties the list
public Object clone() // Returns a shadow copy of the array list.
public boolean contains(Object obj)// Checks whether the specified object is in the list
public Object get(int x) // Returns the object at the specified location in the list
public Object getFirst() // Returns the first node in the list
public Object getLast() // Returns the last node in the list
public int indexOf(Object obj)// Returns the first position of the specified object in the list, or –1 if

the object is not found.
public boolean isEmpty() // Checks whether the list is empty
public int lastIndexOf(Object obj)// Returns the last position of the specified object in the list, or –1 if

the object is not found.
public boolean isEmpty() // Returns true if the list is empty; false otherwise.
public boolean remove(Object obj)//Removes the first occurrence of the specified object from the list
public Object remove(int x)//Removes the object at the specified position from the list
protected void removeFirst() // Removes the first node from the list
protected void removeLast() // Removes the last node from the list
public booolean set(int x, Object obj) // Overwrites the object at the specified position with the

specified object
public int size()// Returns the length of the list
public Object[] toArray()// Returns an array containing all items in the list in the correct order
public void trimToSize() // Trims the capacity of the array list to its current size.

// Other methods inherited from classes AbstractList, AbstractCollection, and Object
// Other methods inherited from interface List

Serializable // Interface

Cloneable // Interface

Iterable // Interface

Collection // Interface

List // Interface

Queue // Interface

Object

AbstractList

AbstractCollection

AbstractSequentialList

Lecture 8: Support for Abstract Data Types Elvis C. Foster

93

8.4.2 Linked List in C++

Due to C++’s strong support of pointers, the language facilitates the creation of linked lists in a much more

straightforward and elegant way than Java does. Let us again consider the LibraryPatron class of figure 8-3.

To create a linked-list of LibraryPatron objects, we may use a structure to represent the node, and then

construct the linked-list of nodes. Figure 8-11 illustrates C++ code snippets to represent this approach. As in the

case of the previous subsection, the figure here omits the code snippet for the driver class; it is assumed that you

understand that this would be required as well. Finally, notice that the C++ code requires fewer classes than the

Java code. In the figure, two classes are used; the code could actually packed in a single program file, but in the

interest of flexibility and clarity, two classes are recommended as shown.

Figure 8-11: C++ Construction of a Linked-list for LibraryPatron Instances

// Code snippet for constructing a linked-list of LibraryPatron instances
#include <cstdlib> #include <iostream>
#include<ctype.h> #include<string.h>
using namespace std;

struct PatronNode
{
 LibraryPatron nInfo;
 PatronNode* nNext;
};

public class PatronL
{
 protected:
 PatronNode nFirst, nLast;
 int length;

 // Member functions of the linked list class would follow this point
}

// Code snippet for constructing a linked-list of LibraryPatron instances
#include <cstdlib> #include <iostream>
#include<ctype.h> #include<string.h>
using namespace std;

class LibraryPatron
{
 private: // Private data items
 string pStatus;
 protected: // Protected data items
 int pNumber;
 string pName, pMajor;

 // Public prototypes of member functions would follow
 // . . .
} // End of LibraryPatron Declaration

// Specification of member functions would follow . . .

Lecture 8: Support for Abstract Data Types Elvis C. Foster

94

8.5 Other ADTs

Having looked at how classes, array-lists, vectors, and linked-lists are constructed in [two] different programming

languages, the next logical step is to conduct a similar study for each of the ADTs mentioned in the introduction,

and then expand the inquiry to other languages. Obviously, you should clearly see where this could be going: We

could have one section per ADT, and this lecture would extend for several pages. While this exercise is very

tempting and would no doubt be quite enlightening, in the interest of expediency, and on the basis of your

previously acquired knowledge and skills in this and earlier Computer Science courses, you are encouraged to

engage in this exploration on your own.

Exercise 2: Identify a language (an OOPL) that you would like to learn. Examine how the various ADTs

mentioned in section 8.1 are supported in the language, and set up comparison grids comparing the new language

with one that you are familiar with.

8.6 Summary and Concluding Remarks

Here are the salient points of this lecture:

 An ADT is a programming construct with a defined set of data items, and a set of possible operations on those

data items.

 Common ADTs that appear in contemporary programming are dynamic lists, linked lists, stacks, queues, binary

trees, binary search trees, heaps, B-trees, hash tables, and graphs.

 Common sort algorithms that are discussed in contemporary programming are straight-selection-sort,

exchange-selection-sort, insertion-sort, bubble –sort, quick-sort, merge-sort, tree-sort (as in binary search tree),

and heap-sort.

 The starting point for probing how a language supports ADTs is to look at how the language supports classes,

dynamic lists, and various other ADTs.

The next lecture will build on the discussion here by focusing on support for OOP in contemporary programming

languages.

8.7 Recommended Readings

[Pratt & Zelkowitz 2001] Pratt, Terrence W. and Marvin V. Zelkowits. 2001. Programming Languages:

Design and Implementation 4th Edition. Upper Saddle River, NJ: Prentice Hall. See chapters 6 & 10.

[Sebesta 2012] Sebesta, Robert W. 2012. Concepts of Programming Languages 10th Edition. Colorado

Springs, Colorado: Pearson. See chapter 11.

[Webber 2003] Webber, Adam B. 2003. Modern Programming Languages: A Practical Introduction.

Wilsonville, Oregon: Franklin, Beedle & Associates. See chapters 12, 14, 15 & 16.

