

Lecture Notes on Programming Languages Elvis C. Foster

15

Lecture 03: Translation Issues

This lecture contains:

 Introduction

 Overview of Syntax

 Overview of Program Translation

 Translation Models

 BNF Notation for Syntax

 Lexical Analysis

 Syntax Analysis

 Summary and Concluding Remarks

Copyright © 2000 – 2018 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without

prior written permission of the author.

Lecture 3: Translation Issue Elvis C. Foster

16

3.1 Introduction

The compilation process was introduced in lecture 1. For ease of reference, figure 1-4 is repeated as figure

3-1, outlining the main aspects of the translation (compilation) process.

Figure 3-1: Illustrating the Translation Process for a Typical High Level Language Program

As can be seen from the figure, the translation problem involves conversion of instructions written in a high-

level language (HLL) program to machine readable instructions for implementation. The program passes

through three major states: lexical analysis, syntax analysis, and code generation.

3.2 Overview of Syntax

Syntax is the arrangement of words and symbols to define and depict relationships. In computer

programming, syntax serves the following purposes:

 We use syntax to define the sequence of symbols that constitute valid programs.

 The syntax provides a means of communication between programmers and the language processor.

 Syntax also facilitates communication among programmers.

Syntactic elements of a language are called lexemes. These lexemes fall into categories called tokens. Some

tokens have just one possible lexeme (for example, each operator has one symbol). Others may have several

possible lexemes (an identifier is any valid variable specified by the programmer).

3.2.1 Syntactic Criteria

The criteria for evaluating syntax were discussed in lecture 1. They include the following:

 Readability

 Support for abstraction

 Simplicity

Source
Code

Lexical

Analysis
Symbol
Table

Syntax

Analysis

Syntax
Tree

Code

Generation
Assemble
r Code

Linking and
Loading

Object
Code

External
Files

Lecture 3: Translation Issue Elvis C. Foster

17

3.2.1 Syntactic Criteria (continued)

 Orthogonality

 Ease of translation

 Support for verification

 Lack of ambiguity

 Type checking

 Control structures,

 Input/output processing

 Programming environment

 Usage cost

 Exception handling

 Functionality

 Flexibility

3.2.2 Syntactic Elements

The following are the basic components that are typically featured in the syntax of a programming language:

 Character Set: What are the characters (also called terminal symbols) supported by the language:

 Data Types: What are the primitive data types supported by the language? What are the advanced

(programmer-defined) data types supported?

 Identifiers: How are identifiers defined?

 Operator Symbols: What operators are supported for arithmetic and logical constructions? What is the

precedence of these operators?

 Keywords and Reserve Words: What are the keywords and/or reserve words? Ideally, the list should

not be too long as this will affect how easy it is to learn the language.

 Noise Words: These are optional keywords.

 Comments: How are comments made?

 Whitespace: Are blank lines, tabs, and spaces allowed?

 Delimiters: What are the delimiters that are supported?

 Free/Fixed Format: Is the language a free-format or a fixed-format?

 Expressions: How are expressions constructed?

 Statements: What are the valid statements supported by the language?

3.2.3 Subprogram Structure

Different languages employ different structures for subprograms. Among the commonly known structures

are the following:

 Separate Subprograms: Subprograms are written in separate files (as in Fortran).

 Integrated Nested Subprograms: Subprograms are part of the program file, and can be nested.

Examples of languages that support this approach are Pascal, ALGOL, Fortran, JavaScript, PHP, RPG.

 Integrated Independent Subprograms: Subprograms are part of the program file, and cannot be

nested. Examples of languages that support this approach are C, C++, Java, SmallTalk

 Separate Data Description: Data descriptions are separated from executable statements (as in COBOL

and RPG).

 Non-separated Subprograms: Subprogram definitions are not separated from the main program (as in

SNOBOL4).

Lecture 3: Translation Issue Elvis C. Foster

18

3.2.4 Language Recognizers and Generators

In the most general terms, a language is the set of all valid statements (strings of characters) from a defined

alphabet. A language recognizer is a mechanism for recognizing all valid statements (strings) of a language.

Referring to figure 3-1, the syntax analysis portion of a compiler is essentially a language recognizer.

A language generator is a device that can be used to generate valid statements of a given language. Since the

statement (sentence) produced is random, the usefulness of the language generator is limited. However, if

controlled, the language generator can be quite useful.

There is actually a close relationship between a language recognizer and a language generator. This will

become clear as we proceed.

3.3 Overview of Program Translation

Please revisit the translation process of figure 3-1. Program translation may be via a single pass, or multiple

passes. Multi-pass compilers typically use two or three passes to convert the source code to optimized object

code. Following is a summary of each category:

 Single-pass Compilation: In this approach, code analysis and code generation are done in the same

phase. Examples of such languages include Pascal and Modula-2; several versions of single-phase C

compilers have also been proposed for teaching purposes.

 Two-pass Compilation: Here, code analysis is typically done in the first phase, followed by code

generation in the second phase. Alternately, phase 1 could be used for initial translation, and phase 2 for

code optimization. Languages such as C and PHP use two-pass compilation.

 Three-pass Compilation: Two approaches to three-pass compilation are prevalent. In one case, phase 1

is used for source code analysis, pass 2 for initial code generation, and pass 3 for code optimization; the

language Perl uses this approach. In the other case, phase 1 is used for source code analysis, phase 2 for

the generation of an intermediate code, and phase 3 for the generation of the final optimized code; the

language Java uses this approach.

3.3.1 Analysis of Source Code

Analysis of the source code consists of three steps: lexical analysis, syntax analysis, and semantic analysis.

In lexical analysis (LA), the source code is converted to a sequence of characters and terminal symbols from

the character set of the language. These are called lexical items or tokens (more on this later). Finite state

machines (discussed later) are useful language recognizers during lexical analysis. The LA process also

commences the loading of the compiler’s symbol table (to be clarified later).

Lecture 3: Translation Issue Elvis C. Foster

19

3.3.1 Analysis of Source Code (continued)

Syntax analysis (also called parsing) produces the syntax tree — a hierarchical representation of the source

code, based on the syntax rules of the language. The output of the lexical analyzer is used as input to the

syntax analyzer. The main functions of the syntax analyzer are

 Maintenance of the symbol table

 Insertion of (formerly) implicit information

 Error detection

Semantic analysis examines the syntactic structures for meaningfulness. This process either produces an

initial (draft) version of the object code, or prepares the program for subsequent generation of object code.

3.3.2 Construction of the Object Code

The output from the semantic analyzer is used as input to the (object) code generator. If the program

includes subprograms, a final linking and loading state is required to produce the complete executable

program. The code is then optimized before execution.

3.4 Translation Models

This section discusses translation models under the following subheadings:

 BNF Grammars

 Syntax Trees

 Finite State Machines

 Other Methodologies

3.4.1 Grammars

A grammar is defined completely by 3 finite sets and a start symbol. Mathematically, we may represent a

grammar as follows:

G[Z] = {N, T, P, Z} where

N is the set of non-terminal symbols;

T is the set of terminal symbols;

P is the set of production rules that ultimately connect expressions with non-terminal symbols to

expressions with terminal symbols;

Z is the start symbol such that Z Є N.

Lecture 3: Translation Issue Elvis C. Foster

20

3.4.1 Grammars (continued)

From the above definition, the following constraints are normally applied:

 The intersection of sets N and T is the empty set, i.e., N ∩ T = {}.

 The alphabet of a grammar is comprised of all terminal and non-terminal symbols, i.e.,

N Ụ T = alphabet.

 The language of the grammar is the set of all acceptable strings for that grammar.

Reputed linguist Noam Chomsky describes four types of grammar. With some modification, we use them in

the study of programming languages to explain these languages are developed. The languages are

 Phrase Structure Grammar

 Context Sensitive Grammar

 Context Free Grammar

 Regular Grammar

3.4.2 Phrase Structure Grammar

Phrase structure grammars (PSG) are used to describe natural languages. There are different dialects of

PSG, for instance head-driven phrase structure grammar (HPSG), the lexical functional grammar (LFG),

and the generalized phrase structure grammar (GPSG).

In a PSG, the productions are of the following form:

To put it in words, a non-null notation (including terminal and/or non-terminal symbols) on the left can be

replaced by any valid combination of symbols (terminal and/or non-terminal) on the right, including the

empty set.

Example 1:

B ::= V where

B Є {N Ụ T) and B is not null ; alternately expressed as B Є {N Ụ T}+

V Є {N Ụ T) and V can be null; alternately expresses as V Є {N Ụ T}*

Consider the PSG given by the following sets:

G[Z] = {(Z, A, B, C), (a, b, c), P, Z} where P consists of the following rules:

R1. Z ::= aZBC | aBC

R2. CB ::= BC

R3. aB ::= ab

R4. bB ::= bc

R5. bC ::= bc

R6. cC ::= cc

R7. BC ::= cC

Q1a. We may derive the string abc from the grammar (thus showing that it is valid) as follows:

By R1: Z aBC By R3: aBC abC By R5: abC abc

Q1b. We may show that a
2
bc

3
 is a valid string as follows:

By R1a: Z aZBC By R1b: aZBC aaBCBC By R3: aaBCBC aabCBC

By R5: aabCBC aabcBC By R7: aabcBC aabccC By R6: aabccC aabccc

Lecture 3: Translation Issue Elvis C. Foster

21

3.4.2 Phrase Structure Grammar (continued)

Notice from the forgoing example, that in order to determine that a string pattern or phrase is valid, it has to be

derived. Each term in a derivation is called a sentential form. Alternately, a sentential form is a term that is derivable

from the start symbol of a grammar. Formally, a language may be defined as a set of sentential forms (each consisting

of only terminal symbols) that can be derived from the start symbol of the grammar.

3.4.3 Context-Sensitive Grammar

In a context-sensitive grammar (CSG), either sides of any given production rule may be surrounded by a

context of a set of terminal and/or non-terminal symbol(s). Formally, we say that productions are of the

following form:

To further paraphrase, a string may replace a non-terminal A in the context of x and y, where x and y

represent valid sentential forms of the grammar. One application of this grammar is in programming

languages that require variables to be declared prior to their usage (for example, Pascal, C, C++, Java,

COBOL, etc.). Apart from this, the CSG is not widely used for programming languages.

3.4.4 Context-Free Grammar

In a context-free grammar (CFG), a non-terminal symbol, A, may be replaced by a string (i.e. sentential

form) in any context. The production rules are typically used to recursively generate string patterns from a

start symbol. CFGs appear in most programming languages. Formally, we say that productions are of the

following form:

Example 2:

Example 3:

aAy ::= xay where

A Є N

x, y Є {N Ụ T} or x, y Є { }; alternately expressed as x, y Є {N Ụ T}*

a Є {N Ụ T) and a is not null; alternately expresses as a Є {N Ụ T}+

A ::= a where

A Є N

a Є {N Ụ T} or a Є { }; alternately expressed as a Є {N Ụ T}*

Referring to example 1, Rule 1 is also context-free. We may therefore define a grammar as follows:

Consider the CFG given by the following sets:

G2[Z] = {(Z, A, B, C), (a, b, c), P, Z} where P consists of the following rules:

R1. Z ::= aZBC | aBC | abc

We may define a grammar for numeric data as follows:

G[Number] = {(Number, Digit), (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, .), P, Number} where P consists of the

following:

R1. Number ::= <Digit> | <Digit> <Number>

R2. Number ::= <Number>.<Number>

R3. Digit ::= 0|1|2|3|4|5|6|7|8|9

http://en.wikipedia.org/wiki/Production_rule
http://en.wikipedia.org/wiki/Terminal_symbol
http://en.wikipedia.org/wiki/Nonterminal_symbol

Lecture 3: Translation Issue Elvis C. Foster

22

3.4.5 Regular Grammar

In a regular grammar (RG), productions are of the following format:

Example 4:

3.4.6 Chomsky Hierarchy

The grammars may be organized in a hierarchy (known as the Chomsky hierarchy) as shown in figure 3-2.

Of the four grammars, CFG and RG are more widely used in the design of programming languages.

Figure 3-2: Chomsky Hierarchy

A ::= a | aB | Ba where

A, B Є N and a Є T

Consider the RG given by the following sets:

G3[Z] = {(Z, B), (a, b), P, Z} where P consists of the following rules:

R1. Z ::= Zb | Bb

R2. B ::= Ba | a

Q4a. We may derive the string a
3
b

2
 from the grammar (thus showing that it is valid) as follows:

By R1a: Z Zb By R1b: Zb Bbb By R2a: Bbb Babb By R2a: Babb Baabb

By R2b: Baabb aaabb

RG

CFG

CSG

PSG In
cr

ea
si

ng
 p

op
ul

ar
ity

 in

co
m

pl
ie

r
co

ns
tr

uc
tio

n

Lecture 3: Translation Issue Elvis C. Foster

23

3.4.7 Other Notations

Two additional notations worth remembering are as follows:

 A + B means that B is derivable from A in one or more steps.

 A * B means that B is derivable from A in zero or more steps.

 Let G[Z] be a grammar, and let xβy be a sentential form of G. Then β is called a phrase of sentential form xβy for

non-terminal B if Z * xβy and B + β. Moreover, β is called a simple phrase of sentential form xβy for non-

terminal B if Z * xβy and B β (i.e., β is derivable from B in one step).

In other words, if β is derivable form a non-terminal symbol in one step, and β appears as part of a sentential

form, S, that is derivable in zero or more steps, then β is a simple phrase of sentential form S.

Example 5: Figure 3-3 shows an example of an RG that defines an integer.

Figure 3-3: Grammar for Integer Definition

3.4.8 Syntax Trees

A syntax tree (also called derivation tree) is a graphical representation used to illustrate the derivation of a

sentential form from a grammar.

Example 6: Figure 3-4 shows how we may use a derivation tree to show that 21 is a valid integer of

grammar in figure 3-3.

Figure 3-4: Syntax Tree to Show that 21 is Valid Based on Grammar G3 of Figure 3-3

Consider the grammar given by the following sets:
G4[<Integer>] = {(<Integer>, <Digit>), (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), P, <Integer>} where P consists of the following
rules:
R1. <Integer> ::= <Integer> <Digit> | <Digit>
R2. <Digit> ::= 0|1|2|3|4|5|6|7|8|9

Q5a. The BNF notation for this grammar could simply be expressed as follows:

Integer> ::= <Integer> <Digit> | <Digit>
<Digit> ::= 0|1|2|3|4|5|6|7|8|9

Q5b. We can show that <Integer>1 is a phrase as follows:
 <Integer> <Integer><Digit> <Integer>1
 So <Integer>1 is a phrase of itself for non-terminal <Integer>.

Q5c. We can also easily show that 1 is a simple phrase of sentential form <Integer>1 for non-terminal <Digit>.

<Integer>

<Digit>

<Integer> <Digit>

1

2

Lecture 3: Translation Issue Elvis C. Foster

24

3.4.8 Syntax Trees (continued)

Ambiguity

If two or more derivation trees exist for the same sentential form of a grammar G, then G is said to be

ambiguous. The effect of ambiguity is to cause confusion: given an input, it is not known for certain which

interpretation the computer will take.

Example 7:

Figure 3-5: Syntax Trees for Ambiguous If-Statement

Figure 3-5a: Ambiguity — the Else is Associated with the Second If-Statement

The following grammar is used for the If-Statement in languages such as Pascal and Algol:

<If-Statement> ::= If <Condition> Then <Statement> [Else <Statement>]

<Statement> ::= <IfStatement> | <WhileStatement> | <ForStatement> | AssignmentStatement> | . . .

<Condition> ::= [NOT] <Comparison> | <Variable> <Operator> <Variable> | <BooleanVariable> |

 <Comparison> <Connector> <Comparison>

<Connector> ::= AND | OR

<Operator> ::= < | <= | = | <> | > | >=

Now consider the pseudo-statement, and show that it is ambiguous: If C1 Then If C2 Then S1 Else S2:

The derivation trees are shown in figure 3.5.

If-Statement

If C1 Then If-Statement

If C2 Then Statement Else

Statement S1

S2

Lecture 3: Translation Issue Elvis C. Foster

25

Figure 3-5b: Ambiguity — the Else is Associated with the First If-Statement

By observation, a grammar is ambiguous whenever any of the following conditions hold:

a. The grammar contains a self-embedded term, and there is a (left or right) recursion on that term

b. The grammar contains circulations of the form A + A

Most programming languages exhibit ambiguity in some aspect of their grammar. Of more importance is

whether and how the language allows the programmer to avoid ambiguities. For instance, in many

languages, you can use blocking (i.e., compound statement) to avoid ambiguity when using nested if-

statements.

3.4.9 Finite State Machines

A finite state machine (FSM) is a graphical representation of the states and transitions among states for a

software component. In an FSM (also referred to as state diagram or finite state automaton) nodes are

states; arcs are transitions labeled by event names (the label on a transition arc is the event name causing the

transition). The state-name is written inside the node. When used in the context of programming language

design, the FSM is employed to represent the production rules of a grammar.

Example 8:

If-Statement

If C1 Then If-Statement

If C2 Then Statement Else

Statement S1

S2

Consider the grammar given by the following sets:
G5[<Z>] = {G<Z> ::= {(Z, B), (a, b), P, Z} where P consists of the following rules:
R1. Z ::= aZ | aB
R2. B ::= bB | b

Then the language for this grammar may be expressed as follow: L<G5> = {ambn where m, n >= 1}.
Figure 3.6 shows the FSM for this grammar.

Lecture 3: Translation Issue Elvis C. Foster

26

Figure 3-6: FSM for the Grammar of Example 8

The FSM is useful to syntax analysis in the following way: To test the validity of an input string, the final

state must be reached. If a final state cannot be reached, then the input string is invalid.

A finite state machine of this form (illustrated in figure 3-6) is said to be non-deterministic. The reason for

this is that it is impossible to determine which path to follow in the FSM without looking ahead. If we

assume that there is no way of looking ahead to the next symbol, then only the current symbol can be

considered.

Formally, we may define a non-deterministic finite state machine (NDFSM) as an FSM with the following

properties:

 A finite set of states (nodes)

 A finite input alphabet

 A start state (one of the nodes)

 A finite set of final states which is a subset of the set of states

 A set of transition functions (arcs) form node to node, each being labeled by an element of the input

alphabet

 Given a state and an input symbol, more than one resultant states may be possible

What would be more desirable is a deterministic finite state machine (DFSM) — where each transition is

predictable. To obtain a DFSM from an NDFSM, you represent the non-deterministic transitions as

transitions to new states, as shown in figure 3-7.

Formally, we may define a deterministic finite state machine (DFSM) as an FSM with the following

properties:

 A finite set of states (nodes)

 A finite input alphabet

 A start state (one of the nodes)

 A finite set of final states which is a subset of the set of states

 A set of transition functions (arcs) form node to node, each being labeled by an element of the input

alphabet, where given a state and an input symbol, only one resultant state transition is possible

Input
a

a

b

Z B

Final

b
Start

Lecture 3: Translation Issue Elvis C. Foster

27

Figure 3-7: Replacing an NDFSM with a DFSM

Related production rules are
S ::= aA | bB
A ::= aA | aC
B ::= bB | bC

C ::= 0

Start
Input

a

S B
b

b

A

a

C

a

b

The above NDFSM can be replaced by the following DFSM:

Start
Input

a

S
b

b

B

a

A

A C B C

a b

In the hybrid state AC: If the
next input is an a, it is pushed
to state A; if the next input is a
final symbol, it is pushed to C.

In the hybrid state BC: If the
next input is a b, it is pushed to
state A; if the next input is a
final symbol, it is pushed to C.

Start
Input

a

S
b

b

B

a

A

a b

X Y

Referring to the diagram above,
if we replace the hybrid states
as new final states, then we
obtain a DFSM as shown.

Lecture 3: Translation Issue Elvis C. Foster

28

3.4.9 Finite State Machines (continued)

FSMs relate to the translation process in the following way:

 Only regular grammars (RGs) are represented by FSMs.

 Only DFSMs are useful for automatic translation. The input string must lead to a final state in a

deterministic way; otherwise it is invalid.

 The DFSM may be represented internally by software.

 The DFSM is equivalent to the derivation tree, and may therefore be considered as an alternative.

 Due to all of the above, most programming languages are based on RGs.

3.4.10 Other Methodologies

Apart from FSMs, and syntax trees, other methodologies for recognizing syntax include pushdown

machines (PM), linear-bounded machines (LBM), and turing machines (TM). Figure 3-8 provides a listing

showing the relative complexity of each notation. However, knowledge of these other techniques is not

required for this course.

Figure 3-8: Methodologies for Syntax Recognition

Please note:

 Turing machines ideally have infinite storage; in practice, computers qualify as Turing machines.

 A linear-bounded machine can be considered to be a Turing machine with finite storage.

 A pushdown machines can be considered to be a finite state machine with a stack.

3.5 The BNF Notation for Syntax

The BNF (Baccus-Naur Form) notation for syntax was developed by John Baccus and Peter Naur during the

formative years in the development of programming languages. However, due to its profundity (despite

being a simple convention), it is still widely used today. The main conventions used in the BNF are shown

in figure 3-9.

Turing Machines for PSGs

Linear-Bounded Machines for CSGs

Pushdown Machines for CFGs

Finite State Machines for RGs In
cr

ea
si

ng
 C

om
pl

ex
ity

Lecture 3: Translation Issue Elvis C. Foster

29

Figure 3-9: BNF Notation Symbols

Example 9:

Figure 3-10a: C++ Variable Declaration

Figure 3-10b: Java Variable Declaration

Figure 3.10 provides the syntax for C++ variable declaration, followed by the corresponding Java

syntax. You will notice that they are similar but not identical.

From figure 3.10a, you can see that the following are valid C++ declarations:

bool ExitTime;

int const LIMIT = 100;

From figure 3.10b, you can see that the following are valid Java declarations:

boolean ExitTime;

static final int LIMIT = 100;

Variable_Declaration ::= [static | register | const] <Type> <Identifier-List>;
Type ::= [short | long | unsigned | signed] int | char | float | double | enum | bool | <AdvancedType>
Identifier_List ::= <Identifier> [= <Expression>][* , <Identifier> [= <Expression>] *]
Expression ::= <ArithmeticExpression> | <BooleanExpression>
Arithmetic_Expression ::= . . . // You would need to define this
Boolean_Expression ::= // You would need to define this

Variable_Declaration ::= [public | private | protected | static | final | abstract] <Type> <Identifier-List>;
Type ::= [byte | short | int | long] float | char | double | boolean| <ClassName>
Identifier_List ::= <Identifier> [= <Expression>][* , <Identifier> [= <Expression>] *]
Expression ::= <ArithmeticExpression> | <BooleanExpression>
Arithmetic_Expression ::= . . . // You would need to define this
Boolean_Expression ::= // You would need to define this

Note: The construct {<Element>} is the original construct for repetition. However, C-based languages use the left curly brace
({) and right curly brace (}) as part of their syntax. To avoid confusion, it has been recommended that for these languages, the
construct <l>*<m> <Element> or <Element>* be used. But that too is potentially confusing. Therefore, for this course, we will
sometimes use the construct [* <Element> *] to denote zero or more repetitions. As an alternative to all of this commentary, is
to use the original notation and stipulate symbols such as the left brace ({), right brace (}), left square-brace ([), or right square-

brace (]) in quotations whenever they are required as part of the syntax.

Symbol Meaning

::= “is defined as”

[. . .] Denotes optional content (except when used for array subscripting)

<Element> Denotes that the content is supplied by the programmer and/or is non-terminal

| Indicates choice (either or)

{<Element>} Denotes zero or more repetitions

<Element>* Alternate notation to denote zero or more repetitions

<l>*<m><Element> Denotes l to m repetitions of the specified element

[* <Element> *] Alternate and recommended notation to denote zero or more repetitions for this course

Lecture 3: Translation Issue Elvis C. Foster

30

3.6 Lexical Analysis

The lexical analyzer is the front-end to the syntax analyzer. During lexical analysis, the source program is

converted to a sequence of terminal symbols the character set of the language. These are called lexical items

or tokens.

Example 10:

For simplicity, regular grammars are typically used to define lexical symbols. Lexical entities directly define

sequence of terminal symbols. Syntax is normally defined via regular grammars and context-free grammars.

Syntactic elements directly involve sequences of lexical entities.

All symbols identified must be defined by the grammar of the language. These symbols are loaded into the

symbol table.

3.6.1 Symbol Table

The symbol table contains critical information relating to identifiers, data items, subprograms, and other

program components. Details relating to these components include related address locations as well as other

execution details.

During execution, reference is not made to identifiers, but their related addresses. The symbol table is

gradually built throughout the various stages of the translation process. However, its construction begins

during lexical analysis.

Contents of the symbol table include the following (figure 3-11 provides an illustration):

 Name, description, address location, and accessing information for variables and constants

 Name, description, address location, and accessing information for subprograms

Consider the following simple Pascal program:

A lexical analyzer may produce the following listing:

Program_Symbol Identifier Left_Paren Identifier Comma Identifier Right_Paren

Semicolon Var_Symbol Identifier Comma Identifier Comma Identifier

Colon Integer_Symbol Semicolon . . .

End_Symbol Period

Program Add(Input, Output);

Var a, b, Sum: Integer;

Begin

 Read (a, b);

 Sum := a + b;

Writeln(“Sum is “, Sum);

End.

Lecture 3: Translation Issue Elvis C. Foster

31

Figure 3-11: Example of Symbol Table Contents

Each name that is encountered by the compiler/interpreter forces a reference to the symbol table. If the name

is not already there it is added to the table. The table must be designed to facilitate easy searching.

Alternatives include B-tree, hash table, and binary search tree.

Languages that require declaration of identifiers before they are used allow for easy and early development

of the symbol table. Examples include C, C++, Java, Pascal, etc.

Languages that do not require declaration of identifiers before they are used lead to more difficult and later

development of the symbol table. Examples include FoxPro, Fortran, RPG, etc.

3.6.2 Error Detection

Using a parse tree or FSM along with a symbol table, the lexical analyzer is able to detect and report a

number of errors during program translation. Among the errors that can be detected and reported are the

following:

 Undefined identifier

 Punctuation errors

 Recognizable comments

 Numeric overflow

 Type conflicts

 String length violations

 Incorrect use of reserve words

3.7 Syntax Analysis

Syntax analysis produces a solution to the parsing problem in the following way:

 Given a grammar and a sequence of symbols, determine whether the sequence belongs to the language

of the grammar.

 If it has been determined that the input sequence belongs to the grammar’s language, then recognize the

structure of the sequence in terms of the production rules of the grammar.

The following are four approaches that may be employed:

 Leftmost derivation

 Rightmost derivation

 Leftmost reduction

 Rightmost reduction

Name Object Type Description Address No. Of Bytes

Add Prog Name Program Name 604A0

a Variable Integer variable 604C1 4

b Variable Integer variable 604C5 4

Sum Variable Integer variable 604C9 4

. . .

Attempt to derive the string from the start symbol.

Start with the string and attempt to reduce to the start symbol.

Lecture 3: Translation Issue Elvis C. Foster

32

3.7 Syntax Analysis (continued)

Example 11: Figure 3-12 illustrates these approaches.

Figure 3-12: Illustrating Syntax Derivation and Reduction

Consider the grammar given by the following sets:
G6[<E>] ::= {(E, T, F), (i, *, +), P, E} where P consists of the following rules:
R1. E::= E + T | T
R2. T ::= T * F | F
R3: F ::= (E) | i

Given the above, show that i + i * i is a sentence of the grammar G6.

Leftmost Derivation:
E E + T T + T F + T i + T i + T * F i + F * F i + i * i

Rightmost Derivation:
E E + T E + T * F E + T * i E + F * i E + i * i T + i * i F + i * i i + i * i

So i + i * I is a valid sentence of L<G5>.

<E>

<E>

<T>

*

<F> i

<F> i

+

<T> <F> i

The derivation tree is as follows:

Leftmost Reduction:
i + i * i F + i* i T + i * i E + i * i E + F * i E + T * i E + T * F E + T E

Rightmost Reduction:
i + i * i i + i * F i + F * F i + T * F i + T F + T T + T E + T E

Lecture 3: Translation Issue Elvis C. Foster

33

3.7.1 Syntax Parsers

There are two types of syntax parser:

 Top-down parsers use the derivation approach to build a parse tree in pre-order, starting at the root.

 Bottom-up parsers use the reduction approach to build the parse tree in reverse order, starting at the

leaves and working backwards to the root.

Figure 3-13 provides a summarized algorithm for each type of parsing. Obviously, they would need further

refinement before programming, but in their current state, they should convey the essence of each approach.

Note that the top-down parsing algorithm is recursive, typically requiring the first parameter

(ThisString) to be initialized to the start symbol of the related grammar, and the second parameter (Target

String) to be set to the input string being analyzed.

Figure 3-13: Parsing Algorithms

Top-Down Parsing Algorithm:

LeftDerivatation (ThisString, TargetString): Returns a string
START
 Let STARTER be the start symbol of the grammar;
 Let Left, LeftString,RightString be strings;
 If (ThisString <> TargetString)
 If (ThisString = STARTER)
 Find the appropriate production rule and replace ThisString via that rule;
 End-If; // If same as Start-Symbol

 Assign Left to the start of ThisString up the input immediately preceding the leftmost non-terminal;
 Assign RightString to the leftmost non-terminal of ThisString to the end of the string;
 LeftString := LeftDerivation(Left, TargetString);
 FinalString := LeftString + RightString;
 End-If // If same as target
 Return FinalString;
 // At the end, if FinalString <> TargetString, then there is a syntax error
STOP

Bottom-Up Parsing Algorithm:

LeftReduction (ThisString): Returns a string
START
 Let STARTER be the start symbol of the grammar;
 Let FinalString be a string;
 While (ThisString) <> STARTER)
 Replace left-most simple phrase of ThisString by its non-terminal symbol;
 Store the result in FinalString;
 Look at the next symbol in ThisString;
 End-While
 Return FinalString;
 // At the end, if FinalString <> STARTER, then there is a syntax error
STOP

Lecture 3: Translation Issue Elvis C. Foster

34

3.7.1 Syntax Parsers (continued)

Top-down syntax analysis is more straightforward and easier to follow. Also, errors can be easily reported. However,

it is more difficult to program, and not as efficient as its alternative. One common type of top-down parsing is LR

(left-to-right) parsing: the input is scanned from left to right, and a right-most derivation tree is constructed in reverse.

Bottom-up syntax analysis is a bit more difficult to conceptualize, but ironically easier to program, and is more

efficient than top-down parsing. One common type of bottom-up parsing is RL (right-to-left) parsing: the input is

scanned from right to left, and a leftmost derivation tree is constructed in reverse.

The end-result of syntax analysis is the production of a parse tree for the program. This parse tree represents

all statements included in the program.

3.7.2 Other Activities

Other activities that take place during syntax analysis include error detection and maintenance of the symbol

table.

 Error Detection and Reporting: Errors not detected during lexical analysis are detected and reported

here. These include incorrectly constructed statements, absence or incorrect use of keywords, and

punctuation errors.

 Maintenance of the Symbol Table: Refinement of the symbol table takes place, in preparation for

object-code generation. As explained earlier (in section 3.6.1), the symbol table must contain a reference

for each identifier found in the program.

3.8 Summary and Concluding Remarks

Here is a summary of what has been covered in this lecture (expressed as short paragraphs):

The translation process passes through three major phases: lexical analysis, syntax analysis, and code

generation. The main output from the lexical analyzer is the symbol table; the main output from the syntax

analyzer is the syntax tree; the output from the code generator is the object code.

Syntax fulfills the following purposes: definition of valid programs; communication between programmer

and computer; communication among programmers.

The main criteria to look for when studying or critiquing a language are readability, simplicity,

orthogonality, support for abstraction, problem verification, programming environment, portability, control

structures, reserve words, exception handling, input/out processing, and usage cost, lack of ambiguity, type

checking, functionality, and flexibility.

Syntactic elements include the character set, data types, identifiers, operators, keywords, reserve words,

noise words, comments, whitespace, delimiters, free/fixed format, expressions, and statements.

Options for sub-programming include: separate sub-programs, integrated nested sub-programs, integrated

independent sub-programs, non-separated sub-programs, and separate data description.

Lecture 3: Translation Issue Elvis C. Foster

35

3.8 Summary and Concluding Remarks (continued)

Program translation may occur via single-pass, two-pass, or three-pass compilation.

A grammar may be expressed via four sets: a set of start symbol(s), a set of non-terminal symbols, a set of

terminal symbols, and a set of production rules that facilitate transition to terminal symbols. Valid

derivations via the production rules are called sentential forms.

The Chomsky hierarchy includes four types of grammar: phrase structure grammar (PSG), context-sensitive

grammar (CSG), context-free grammar (CFG), and regular grammar (RG). Of the four grammars, CFG and

RG are more widely used in the design of programming languages.

A syntax tree (derivation tree) is a hierarchical structure representing the derivation of a valid sentential

form from one or more related grammars.

If two or more derivation trees exist for the same sentential form of a grammar G, then G is said to be

ambiguous.

A finite state machine (FSM) is a graphical representation of the states and transitions among states for a

software component. Deterministic FSMs (DFSMs) are very useful in acting as language recognizers during

the translation process.

The BNF notation is widely used to succinctly express the syntactic requirements of a programming

language that follows the definitions of the aforementioned grammars.

A lot of the error detection takes place at the lexical analysis phase, while others take place at the syntax

analysis phase.

Two approaches to parsing are derivation and reduction. Derivation attempts to derive the input string from

the start symbol of the language. Reduction commences with the input string and attempts to work

backwards to arrive at the start symbol of the language. Top-down syntax parsing involves the use of either

left or right derivation to determine the validity of an input string. Bottom-up syntax parsing employs either

left or right reduction to determine the validity of an input string.

Well, this topic is quite a handful, and there is a lot more that could have been mentioned. The intent here is

to provide you with a solid overview. If this information arrests your interest, then you are encouraged to

probe further by reading a text on compiler construction (see [Bornat 1989], [Holmes 1995] , and [Parsons

1992]).

Lecture 3: Translation Issue Elvis C. Foster

36

3.9 Recommended Readings

[Bornat 1989] Bornat, Richard. 1989. Understanding and Writing Compilers 3
rd

 Edition. London:

Macmillan.

[Holmes 1995] Holmes, Jim. 1995. Building Your Own Compiler with C++. Upper Saddle River, NJ:

Prentice Hall.

[Parsons 1992] Parsons, Thomas W. 1992. Introduction to Compiler Construction. New York:

W.H. Freeman and Company. See chapters 2 – 8.

[Pratt & Zelkowitz 2001] Pratt, Terrence W. and Marvin V. Zelkowits. 2001. Programming

Languages: Design and Implementation 4
th

 Edition. Upper Saddle River, NJ: Prentice Hall.

See chapters 3 & 4.

[Sebesta 2012] Sebesta, Robert W. 2012. Concepts of Programming Languages 10
th

 Edition.

Colorado Springs, Colorado: Pearson. See chapters 3 & 4.

[Webber 2003] Webber, Adam B. 2003. Modern Programming Languages: A Practical

Introduction. Wilsonville, Oregon: Franklin, Beedle & Associates. See chapters 2 – 4.

